
www.manaraa.com

STRAINED TURBULENCE AND LOW-DIFFUSIVITY TURBULENT
MIXING USING HIGH PERFORMANCE COMPUTING

A Dissertation
Presented to

The Academic Faculty

By

Matthew P. Clay

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology

August 2017

Copyright c© Matthew P. Clay 2017



www.manaraa.com

STRAINED TURBULENCE AND LOW-DIFFUSIVITY TURBULENT
MIXING USING HIGH PERFORMANCE COMPUTING

Approved by:

Professor P. K. Yeung, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Professor Cyrus Aidun
School of Mechanical Engineering
Georgia Institute of Technology

Professor Devesh Ranjan
School of Mechanical Engineering
Georgia Institute of Technology

Professor Marilyn Smith
School of Aerospace Engineering
Georgia Institute of Technology

Professor Edmond Chow
School of Computational Science
and Engineering
Georgia Institute of Technology

Date Approved: July 26, 2017



www.manaraa.com

To my wife, Éva
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SUMMARY

This thesis presents a fundamental investigation of turbulent fluid flow using direct

numerical simulation (DNS), a numerical approach in which exact governing equations

are computed without modeling. The emphasis is on large-scale parallel computation

and developing novel numerical methodologies which can either model experimental

configurations or take into account extreme variations in the physical properties of

the system. Simulations are conducted for turbulence and turbulent mixing under

axisymmetric contraction, and turbulent mixing at high Schmidt number. The wealth

of information available in DNS provides insight into how these flows evolve, and

supplies data for many unresolved questions in turbulence theory.

The thesis begins with a study of turbulence and turbulent mixing under ax-

isymmetric contraction, which is relevant to engineering flows through variable cross-

section ducts. While axisymmetric contraction has been studied for many decades,

the motivation to pursue it further came from the experimental work of Ayyalaso-

mayajula & Warhaft (J. Fluid Mech., vol. 566, 2006, pp. 273–307; AW henceforth),

which showed that new behaviors emerge in the evolution of the one-dimensional

(1-D) component velocity spectra at sufficiently high Reynolds number. To directly

model the AW wind tunnel facility in the DNS, a spatially dependent strain rate pro-

file was developed, and the numerical algorithm was extended to apply strain rates

as functions of spatial location in a numerical wind tunnel, not time. Simulations of

turbulence at sufficiently high Reynolds number subjected to strain and subsequent

relaxation show very similar evolution of the spectra as reported by AW. Specifically,

a “double-peak” emerges in the compensated transverse spectrum as a result of fast

relaxation of the small scales. Simulations of turbulent mixing in the same numer-

ical configuration are also conducted, motivated by the experiments of Gylfason &

Warhaft (J. Fluid Mech., vol. 628, 2009, pp. 339–356), which used the same wind
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tunnel as AW. The numerical results show increasing agreement with rapid distortion

theory as the strain rate is increased, and that scalars with transverse mean gradients

relax following the strain much faster than scalars with streamwise mean gradients.

To simulate turbulent mixing of high Schmidt number (Sc) scalars, a numeri-

cal algorithm is developed to efficiently handle the increased resolution requirements

of the so-called Batchelor scale of the scalar field, which is
√
Sc time smaller than

the Kolmogorov scale of the velocity field. To combat the high communication cost

of Fourier pseudo-spectral (FPS) methods, a dual-grid dual-scheme numerical ap-

proach is adopted, which decouples the computation of the passive scalar from the

computation of the velocity field (Gotoh et al., J. Comput. Phys., vol. 231, 2012,

pp. 7398–7414). The velocity field is computed on a coarse grid that resolves the

Kolmogorov scale using traditional FPS methods, whereas the scalar is computed

on a fine grid that resolves the Batchelor scale with a combined compact finite dif-

ference (CCD) scheme (Mahesh, J. Comput. Phys., vol. 145, 1998, pp. 332–358).

The ideas of Gotoh et al. (2012) are extended to incorporate the physics of the pas-

sive scalar directly in the design of a parallel code intended for Sc � 1 simulations.

Specifically, the disparate resolution requirements of the velocity and scalar fields are

handled by an approach in which each field is computed separately in disjoint message

passing communicators. Good scalability of the code is maintained by overlapping

communication with computation as much as possible. In homogeneous computing

environments, namely the XE6 partition of Blue Waters at the University of Illinois,

Urbana-Champaign, substantial gains in scalability are obtained by dedicating certain

OpenMP threads to perform communication, while others compute concurrently. The

code is also ported to run on GPU-accelerated machines, specifically Titan at Oak

Ridge National Laboratory, TN, achieving a speedup of 2.7X relative to the CPU-

only code at the largest problem size of 81923. Here too, scalability is improved, this

time by overlapping GPU computations with data movements and communication,
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which is made possible through the latest directives added in OpenMP 4.5 — one

of the most promising programming models on the path towards exascale in high

performance computing.

The newly developed turbulent mixing code is used to generate a DNS database

for high Schmidt number passive scalar mixing under the presence of a uniform mean

scalar gradient in forced isotropic turbulence at Taylor-scale Reynolds number ap-

proximately 140. Scalars with Schmidt numbers ranging from 4 to 512 (the highest

of which is comparable to salinity mixing in the ocean) are simulated on Blue Wa-

ters and Titan using grid resolutions 10243 to 81923. Results at moderate Schmidt

numbers agree well with previous work at more modest problem sizes. The current

simulations greatly extend the maximum Schmidt number compared to prior work at

this Reynolds number, and strongly suggest an approach toward isotropy and satu-

ration of intermittency in the scalar field with increasing Schmidt number. Isotropy

as a function of scale size is analyzed with the skewness structure function, with

an interesting result being the development of a local minimum at 20–30 Batchelor

scales as Schmidt number is increased. The shape of the scalar spectrum suggests

the emergence of Batchelor scaling with increasing Schmidt number, and shows an

exponential decrease in the far-diffusive range. Scalar gradient evolution is analyzed

in Fourier space after deriving the governing equation for the scalar gradient covari-

ance spectrum. Results show the nonlinear amplification of scalar gradients by the

fluctuating strain rates dominating the scalar gradient evolution over a wide range of

scales, and that the spectral budget only has a weak dependence on Schmidt number.
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CHAPTER I

INTRODUCTION

Turbulence is the most common state of fluid motion in natural and engineering flows,

and is characterized by disorderly fluctuations in three-dimensional (3-D) space and

time spanning a wide range of scales. The multiscale nature of turbulence enables

turbulent flows to provide very rapid mixing compared to their laminar counterparts:

in a turbulent flow, large scale inhomogeneities in material properties, e.g., momen-

tum or the concentration of a transported substance, are gradually broken down into

smaller and smaller scales until molecular diffusion smears them out. Such rapid mix-

ing can be useful, for example, in engineering applications like jet engine combustors

which require fuel and oxidizer to be mixed at the molecular level before chemical

reactions can proceed (Peters, 2000). Turbulent flows are also unsteady, and their

sensitivity to changes in their initial and boundary conditions due to strong nonlinear

interactions makes a deterministic approach to studying turbulence intractable (Pope,

2000). Instead, a statistical approach in useful in studying many different aspects of

turbulent flows, in both laboratory experiments and numerical computations.

In this thesis direct numerical simulation (DNS) is used to compute the evolution

of turbulent flows that are of fundamental and practical interest according to exact

equations of motion. Since the pioneering simulations of Orszag & Patterson (1972)

using 323 grid points, DNS has served as a powerful tool for physical understanding

and theory development in turbulence research (Moin & Mahesh, 1998; Ishihara et al.,

2009). The major challenge when using DNS is that the resolution requirements, i.e.,

the number of grid points, increase very rapidly with the Reynolds number (Re)

(Yakhot & Sreenivasan, 2005), and many flows of interest in engineering and nature

occur at high Re. The computation of turbulence using DNS is a recognized grand

1



www.manaraa.com

challenge in high-performance computing (HPC) (Yokokawa et al., 2002), and recent

simulations using multi-petaflop supercomputers have reached problems sizes as large

as O(1) trillion grid points (Yeung et al., 2015; Ishihara et al., 2016), with high

Re and good small-scale resolution being the major driving requirements for the

numerical configurations. Such simulations provide deep insight into fundamental

aspects of turbulence, including the shape of the energy spectrum at high Re (Donzis

& Sreenivasan, 2010) and small-scale intermittency (Sreenivasan & Antonia, 1997),

i.e., the extreme fluctuations that occur in high Re turbulent flows.

Because of its large computational cost, DNS is typically used for canonical flow

configurations where simple boundary conditions permit the use of highly accurate

numerical methods. A challenge when using DNS to understand more complex flows

is to develop numerical methodologies that can take into account all of the relevant

features of the flows of interest, despite all of the simplifications that typically ac-

company a DNS. For example, to understand the evolution of isotropic turbulence

subjected to mean strain in a variable cross-section wind tunnel, one can attempt

to model the effects of the experimental strain rates directly in the DNS. For other

types of flows, it becomes challenging to properly incorporate the physical parameters

controlling the system of interest. Such difficulties arise when using DNS to study

the turbulent mixing of a substance of low molecular diffusivity, where the resolution

requirements for the substance are much stricter than those for the turbulent velocity

field (Gotoh & Yeung, 2013). When attempting DNS of such flows, it is conceivable

that the best understanding and most efficient computation would be obtained when

using numerical approaches which are designed for the target problem of interest.

In many engineering applications a turbulent flow is subjected to a change in

cross-section of the carrying device, e.g., flows through nozzles and diffusers, where

the effects of deformation by irrotational mean strain are of great interest. The mean

strain rates give rise to anisotropy, which weakens when the strain is removed. As-
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suming incompressibility, three principal sub-classes of irrotational mean strain can

be identified, namely: (a) axisymmetric contraction (one extensional direction and

two equally compressive directions), (b) axisymmetric expansion (two equally exten-

sional directions and one compressive direction) and (c) plane strain (one extensional

direction and one compressive direction). A number of experimental (Gence & Math-

ieu, 1979; Liu et al., 1999; Choi & Lumley, 2001; Ayyalasomayajula & Warhaft, 2006;

Brown et al., 2006) and numerical (Lee & Reynolds, 1985; Zusi & Perot, 2013, 2014)

studies covering one or more of these sub-classes are known. All three sub-classes are

distinct and important; however, axisymmetric contraction and expansion (as well as

relaxation therefrom) are more closely related to flows through conduits of variable

cross-section in engineering devices, and to converging and diverging sections in lab-

oratory wind tunnel facilities. A number of early experimental (Uberoi, 1956; Mills

& Corrsin, 1959; Reynolds & Tucker, 1975; Warhaft, 1980) and theoretical (Batche-

lor & Proudman, 1954) studies have focused on the response of isotropic turbulence

subjected to axisymmetric contraction. Velocity fluctuations are (as expected from

the Reynolds stress transport equations) suppressed in the extensional direction but

amplified in the compressive directions. The small scales also depart from isotropy

when the strain rate is large (Uberoi, 1956). However, in these early studies Re was

usually limited, and no attempt was made to investigate the Re dependence of the

flow. Further, while the study of turbulent mixing of scalar quantities for this im-

portant class of flow is very interesting from an engineering perspective, it has only

received limited attention (Warhaft, 1980; Gylfason & Warhaft, 2009).

The first major objective of this thesis is to present a computational investigation

of turbulence and turbulent mixing under axisymmetric contraction and subsequent

relaxation, with a special interest in conditions corresponding to experiments. For the

velocity field, close comparisons are made with the experiments of Ayyalasomayajula

& Warhaft (2006) (AW henceforth) in which grid-generated turbulence was passed
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through an axisymmetric contraction of area ratio 4:1. Using both passive and active

grids, the experiments of AW covered a range of Reynolds numbers (40 to 470, based

on the Taylor scale). A significant result was that a qualitative change in the form

of the transverse one-dimensional (1-D) spectra occurred during relaxation (referred

to as a “double peak”) only if the Re was sufficiently high. Increasing departures

from rapid distortion theory (RDT) (Savill, 1987) were also observed as Re was

increased. The simulations of scalar mixing under axisymmetric contraction follow

the experiments of Gylfason & Warhaft (2009) (GW henceforth), which used the same

wind tunnel as AW to study the evolution of mild temperature fluctuations generated

under the presence of a uniform transverse mean temperature gradient. Here the focus

is on the evolution of scalar derivative statistics which form the scalar dissipation rate,

a fundamental quantity of interest in many applications (Bilger, 2004).

Although strained turbulence becomes less anisotropic upon the removal of strain

(Sarkar & Speziale, 1990; Choi & Lumley, 2001), a full return to isotropy is not

guaranteed. For example, the simulations of Chasnov (1995) and Davidson et al.

(2012) showed that for anisotropic Saffman turbulence (Saffman, 1967; Krogstad &

Davidson, 2010), the large scales do not return to isotropy. Changes in the form of the

spectra measured by AW also imply that different scales respond differently to both

the application and removal of strain. While a considerable body of work is known

for the return-to-isotropy problem in Reynolds stress closures (Lumley & Newman,

1977; Speziale, 1991), at a more detailed level, the nature of anisotropy development

at different scale sizes, which is important for subgrid-scale modeling (Liu et al., 1999),

is still not well understood (Sagaut & Cambon, 2008). To understand the mechanisms

involved it is necessary to study spectral transfer resulting from nonlinear interactions

and pressure-strain correlations between different scale sizes and velocity components

(in the extensional versus compressive directions). Direct numerical simulations using

Fourier pseudo-spectral methods are well suited to provide the detailed information
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necessary for this purpose.

It is well known that, provided the strain rate is uniform in space, turbulence under

irrotational mean strain is homogeneous and can be simulated on a solution domain

that deforms with the mean flow (Rogallo, 1981). A number of such simulations,

with strain rates held constant in time, have been helpful in examining the structure

of Reynolds-stress anisotropy (Lee & Reynolds, 1985), assessing turbulence models

(Zusi & Perot, 2013, 2014), and understanding inertial and fluid particle statistics (Lee

et al., 2015). However as in the case of Gualtieri & Meneveau (2010) (in conjunction

with Chen et al. (2006)), a time-dependent strain rate in the DNS is necessary to

facilitate comparisons with experiment, where typically the turbulence is measured

as it evolves in space along the centerline of a wind tunnel, rather than in time.

In this thesis a smoothly-varying time-dependent strain rate is developed to closely

mimic the laboratory conditions of AW and GW. A series of numerical simulations in

a deforming periodic domain have been performed to study the effect of the Reynolds

number and possible numerical or sampling limitations of the results. To capture

the natural behaviors of both large- and small-scale motions faithfully, simulation

parameters are chosen to ensure that, at all times, the large scales are sufficiently

well sampled along the shortest side of the solution domain, while the small scales are

sufficiently well resolved along the direction of coarsest grid spacing. A pre-simulation

is first carried out in order to produce a state of fully developed isotropic turbulent

flow before strain is applied. The highest grid resolution for simulations focusing

on the velocity field is 40963, and up to 20483 grids have been used to date for the

turbulent mixing studies. During the application of strain the small scales of both

the velocity and scalar fields become strongly anisotropic, but in contrast to the large

scales they return to isotropy quickly when strain is removed. For the case of highest

pre-strain Reynolds number (95 based on the Taylor scale), there is clear evidence

of the characteristic changes in the spectral shapes for the velocity components that
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AW reported in their higher Reynolds number experiments. Detailed analyses of the

evolution of axisymmetric spectra (Mininni et al., 2012) in the simulations show that

this feature is the result of a strong contrast in rates of return to isotropy between the

large scales and the small scales, with this contrast being stronger at higher Reynolds

number. Similarly, the evolution of the scalar spectrum during the application of

strain is in agreement with rapid distortion theory, and during relaxation the change

in shape of the scalar spectrum agrees well with the results of GW.

As discussed previously, a key attribute of turbulent flows is their ability to provide

efficient mixing. Often, the substance or property being mixed is of such a low con-

centration that it does not affect the fluid motion — such substances or properties are

called passive scalars, examples of which include dye in water and small temperature

fluctuations in air (Warhaft, 2000). Aside from the Reynolds number, an important

non-dimensional parameter in passive scalar mixing is the Schmidt number Sc = ν/D,

where ν is the kinematic viscosity of the fluid and D is the molecular diffusivity of the

scalar. The Schmidt number can vary widely depending on the application: mixing in

liquid metals occurs at Sc = O(0.01), typical gas-phase mixing occurs at Sc = O(1),

and dyes mixing in liquids occurs at Sc = O(1000) (Gotoh & Yeung, 2013). Mixing

at Sc� 1 is challenging for both experiments and computations due to the distinctly

different nature of the scalar field when compared to Sc . 1 mixing. When Sc� 1,

the smallest scale in the scalar field is the Batchelor scale ηB = ηSc−1/2, which is
√
Sc times smaller than the Kolmogorov scale η (a measure of the smallest length

scales in the velocity field). The stringent resolution requirements of the Batchelor

scales in Sc � 1 mixing are difficult to meet in both DNS and experiment. Often,

for a fixed resolution (i.e., a given grid size in numerical simulations), one is forced to

limit either the Reynolds number or Schmidt number in order to maintain adequate

resolution of both the velocity and scalar fields (Donzis & Yeung, 2010).

The dramatic increase in the computational cost of Sc� 1 simulations due to the
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strict resolution requirements of the Batchelor scales also forces one to consider how

to efficiently carry out the computations. Traditionally, DNS of turbulent mixing

in homogeneous isotropic turbulence in a periodic domain employ Fourier pseudo-

spectral (FPS) methods, and compute the velocity field and scalar field on the same

grid. At high Schmidt number, this implies that the velocity field is computed at very

high resolution — much higher than might be required to obtain accurate results.

Furthermore, pseudo-spectral methods implemented in multiple dimensions require

expensive memory transpositions, which reduce parallel efficiency at large problem

sizes. To improve efficiency, one may ask: (i) given that the scalar equation is local

in space and does not require the solution of a nonlocal (Poisson) equation like the

velocity field, what is the best method to accurately and efficiently compute the scalar

field; (ii) can the separation of scales between the scalar and velocity fields at high Sc

be taken advantage of to save resources by computing the velocity field on a coarser

grid than is required for the scalar; and (iii) can the one-way coupling between the

velocity and passive scalar be exploited in the design of a parallel code that computes

their combined evolution?

The second major objective of this thesis is to develop a parallel algorithm that

meets the considerations above for problems of at least 81923 (0.5 trillion) grid points

for the scalar field, which is comparable to recent large-scale DNS of a turbulent veloc-

ity field (Yeung et al., 2015; Ishihara et al., 2016). For consideration (i), note that the

advection-diffusion equation for the passive scalar is local in space, and therefore does

not require the same communication-intensive global approaches used for the compu-

tation of the incompressible velocity field, e.g., FPS (Mininni, 2011). An attractive

alternative is to use compact finite difference schemes, which can achieve high ac-

curacy with significantly reduced communication requirements (Mahesh, 1998), and

can be implemented in a manner that does not require memory transposes (Nihei

& Ishii, 2003). Since compact finite difference schemes only require thin ghost lay-
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ers between adjacent sub-domains (Lele, 1992), the volume of message traffic is low.

For these reasons, and because of the need to obtain first and second derivatives for

the advection-diffusion equation, the eighth-order combined compact finite difference

(CCD) scheme of Mahesh (1998) is used. The scheme computes both first and second

derivatives and was used by Gotoh et al. (Gotoh et al., 2012) for the scalar field.

Consideration (ii) is addressed by adopting a dual-resolution approach (Gotoh et al.,

2012; Brethouwer et al., 2003), where the scalar field is computed on a fine grid of

size N3
θ that resolves the Batchelor scale, while the velocity field is computed on a

coarse grid of size N3
v that resolves the Kolmogorov scale. When the velocity field is

needed on the fine grid it is interpolated from the coarse grid values, which is feasible

because the velocity field is very smooth with respect to the fine scalar grid.

For consideration (iii) noted previously, the design of an efficient parallel interface

that provides the required linkage between the velocity and scalar fields computed on

different grids and with different numerical methods is nontrivial, especially at petas-

cale problem sizes. Since multi-cored processors are in widespread use, the codes

employ a hybrid approach in which communication is handled by the Message Pass-

ing Interface (MPI) among so-called MPI processes, each being capable of spawning a

number of shared-memory OpenMP threads. In production simulations Nθ/Nv is typ-

ically 4 or 8, which means the velocity and scalar field problem sizes differ by a ratio

as large as 43 = 64 or 83 = 512. This implies that the overall computational require-

ments are driven by what is needed for the scalar field on the finer grid. Since the code

essentially solves two sets of equations simultaneously it is convenient to separate the

global communicator (MPI COMM WORLD) into two distinct communicators of size Mv

and Mθ, which are easily matched to each problem size, i.e., Mθ/Mv ∝ N3
θ /N

3
v . The

velocity and scalar fields are computed in their respective disjoint communicators,

while the one-way transfer of velocity information from the coarser grid to the finer

grid occurs through the global communicator. Because this transfer is one way it can
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be handled by non-blocking point-to-point communication and overlapped with the

more time-consuming operations for the scalar.

When implementing codes of this nature, it is important to note trends or changes

in the HPC landscape. In particular, one recent trend is that computing architectures

are becoming heterogeneous, where a typical host central processing unit (CPU) is

paired with an accelerator device (often a graphical processing unit, or GPU) to in-

crease computational throughput. The incorporation of accelerators in large machines

is economical due to their low power consumption per floating point operation (Keck-

ler et al., 2011), but their increased complexity places a burden on the application

programmer. For example, in current petascale heterogeneous machines like Titan at

Oak Ridge National Laboratory (ORNL), TN, the host and device memory spaces

are distinct, which implies that any data required for computations on the accelerator

must be copied to the device, before the results can be computed and copied back

to the host. Because the memory bandwidth between the host and device is often

limited (Fujii et al., 2013), one must minimize data movement in the application to

obtain good performance. One must also take care that the computational work of-

floaded to the device can benefit from the massive multithreading typically provided

by accelerators. The algorithm developed in this thesis for high Sc turbulent mixing

is a good candidate for acceleration, primarily due to its moderate communication

cost, and its loops which can take advantage of massive multithreading.

A specific coding objective of this thesis is to port and optimize the CPU-based

code for high Sc turbulent mixing to the Cray XK7 GPU architecture, primarily on

Titan, the 27 petaflops supercomputer at ORNL. To avoid extensive code rewrites,

a directive-based approach is used, which considerably simplifies programming for

heterogeneous systems. Two major options for directive-based programming are

OpenACC and OpenMP, which both allow the user to specify how the workload is

shared between the host and device by inserting directives (i.e., constructs, or prag-
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mas) to a pre-existing code. While programming with OpenACC or OpenMP occurs

at a higher level than hardware-specific languages like CUDA or other accelerator-

programming languages like OpenCL, there are still many opportunities to obtain

significant speedups. Specifically, both OpenACC and OpenMP allow the program-

mer to control data locality and therefore minimize data movement. Also, when the

algorithm permits, communication and computation can be overlapped if the host can

interact asynchronously with the device. While OpenACC has had asynchronous ca-

pabilities since its inception, the latest OpenMP 4.5 standard has added the essential

task and asynchronous clauses (i.e., DEPEND and NOWAIT) to the device (i.e., TARGET)

constructs, which make asynchronous algorithms possible. In the Fortran code devel-

oped in this thesis, OpenMP is the primary programming model used for acceleration.

In particular, the latest OpenMP 4.5 features for asynchronous operations supported

by the Cray Compiler Environment 8.5.7 are used extensively. The code achieves a

speedup of 2.7X compared to CPU-only execution at the largest problem size, which

requires 8192 XK7 nodes on Titan for the scalar. The techniques adopted — espe-

cially the use of OpenMP 4.5 on thousands of nodes — are quite new, and current

trends in the HPC landscape suggest OpenMP will be increasingly well supported

on GPU-dominated platforms of theoretical peak in the order of several hundreds of

petaflops to arrive in the near future, and likely exascale architectures.

Because Sc � 1 mixing is so challenging for both experiment and computation,

there are many fundamental questions regarding the scalar field that have not been

adequately resolved. Perhaps one of the most important of these questions concerns

the isotropy (or universality) of the passive scalar field. Beginning with Kolmogorov

(1941), a key hypothesis driving turbulence research is that at high Re the small-scale

structure of the turbulent velocity field is isotropic, i.e., universal, and is independent

of the large-scale flow. Obukhov (1949) and Corrsin (1951) extended Kolmogorov’s

hypotheses for the velocity field to the scalar field; however, many experimental and
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numerical efforts have found that the scalar field does not exhibit local isotropy, even

at very high Re. The violation of local isotropy is often reported in the measurement

of the scalar derivative skewness, which should be zero if local isotropy holds, but

is found to be O(1) for mild temperature fluctuations in air (Sreenivasan, 1991) —

a scalar with Sc = O(1). Previous simulations (Yeung et al., 2004) have suggested

an approach to local isotropy with increasing Sc, but have been limited to relatively

low Re. Simulations at higher Re (Donzis & Yeung, 2010), on the other hand, have

been limited to moderate values of Sc, such that the separation of scales between the

velocity and scalar fields is limited.

Also of interest at high Re and high Sc are the scaling properties of the scalar

field. In spectral space the primary target is the shape of the scalar spectrum, which

presents the scale-dependent contribution to the scalar variance. At high Sc, the

presence of sub-Kolmogorov fluctuations in the scalar field — the so-called Batchelor

scales described previously — implies that there is significant spectral content in

the scalar spectrum beyond the dissipation range for the velocity field. The range of

scales beyond the viscous cutoff for the velocity field, but before significant dissipation

occurs in the scalar field, is referred to as the viscous-convective range, for which

both Batchelor (1959) and Kraichnan (1974) theorized a k−1 scaling (referred to as

Batchelor scaling). Experimental support for Batchelor scaling is elusive (Miller &

Dimotakis, 1996; Warhaft, 2000), but computations have provided increasing support

for such scaling (Donzis et al., 2010; Gotoh et al., 2014). While Batchelor scaling

pertains to the spectral representation of the scalar fluctuations, there are many

scaling properties in physical space that are also of interest. Here an exact result

is attributed to Yaglom (1949) for the mixed third-order structure function between

the velocity and scalar field. High Reynolds number data supports Yaglom’s relation

in the inertial-convective range of scales well (Yeung & Donzis, 2005), but theory

suggests that the relation should continue to hold in the viscous-convective range
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which develops at high Sc (Gotoh & Yeung, 2013). Previous DNS at lower Re and

moderate Sc support such scaling (Yeung et al., 2002; Iyer & Yeung, 2014), which

should be investigated further at higher Re and higher Sc.

Following the development of numerical algorithms capable of simulating high Re

and high Sc mixing efficiently, simulations are conducted to investigate the aforemen-

tioned (and more) science questions pertaining to the passive scalar field mixed in a

turbulent flow. The third major objective of this thesis is therefore to systematically

investigate the dependence of scalar statistics on the Schmidt number. To do this

a DNS database at a fixed Reynolds number (Rλ ≈ 140, with λ being the Taylor

scale) is generated covering a range of Schmidt numbers. The Schmidt number is in-

creased from Sc = 4 to Sc = 512, with the highest Schmidt number being comparable

to salinity mixing in the ocean. The resolutions required for these simulations vary

from 10243 at the lower Schmidt numbers to 81923 for Sc = 512. Good resolution is

maintained in the simulations to study small-scale statistics, and in many instances

a given Schmidt number is run with different numerical configurations (e.g., different

grid resolutions or different restrictions on the time step) to assess the impact of the

numerics on the results. The simulations were carried out on the petascale machines

Blue Waters and Titan, under PRAC and INCITE allocations, respectively.

In summary, the major objectives of this thesis are as follows:

1. To simulate turbulence and turbulent mixing under irrotational axisym-

metric contraction and subsequent relaxation.

Simulations of turbulence subjected to axisymmetric contraction will be conducted,

using a methodology to model the spatially-varying strain rate from the AW and

GW wind tunnel experiments directly in the time-evolving DNS. Analysis will

focus on the evolution of the 1-D component velocity spectra to see if DNS can

reproduce and explain the AW results. Passive scalar mixing will also be simulated

in the same configurations, focusing on the mixing of scalar fluctuations generated
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by mean scalar gradients in the streamwise and transverse directions. Comparisons

to the results of GW will be made.

2. Develop efficient algorithms for DNS of high Re and high Sc mixing.

To simulate turbulent mixing at high Re and high Sc, the computational methods

developed by Gotoh et al. (2012) will be extended to scale to a larger number

of processors. Specifically, the processors solving for the velocity field and scalar

field will be decoupled, which will enable simulations for arbitrary Sc � 1. The

objective is to develop an approach that scales to large process counts (O(105)

cores) in both homogeneous and heterogeneous computing environments.

3. Study passive scalar mixing in isotropic turbulence with Sc � 1 and

Re sufficiently high for a narrow inertial range.

Using the new computational algorithms, simulations will be conducted to study

turbulent mixing at a Reynolds number sufficiently high to support a narrow iner-

tial range (Rλ ≈ 140) and high Schmidt number (up to Sc = 512), while maintain-

ing good small-scale resolution. Simulations will be conducted to address many

open questions about passive scalar mixing, including the status of local isotropy

and the form of the scalar spectrum.
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CHAPTER II

TURBULENCE UNDER AXISYMMETRIC CONTRACTION

The evolution of a turbulent velocity field subjected to irrotational mean strain in the

form of axisymmetric contraction is a canonical representation of flows in many engi-

neering devices, e.g., flows through nozzles and diffusers. While this configuration has

been studied extensively in both experimental (Choi & Lumley, 2001) and numerical

(Lee & Reynolds, 1985) settings, the flows were typically of low Reynolds number. The

experiments of Ayyalasomayajula & Warhaft (2006) showed that at higher Reynolds

number the picture is more complex. Their results suggest that strong nonlinear

interactions dominate the evolution of the post-contraction anisotropic flow, with a

key result being that the shapes of the component velocity spectra evolve in a non-

trivial manner. There is a need to understand the underlying physical mechanisms

contributing to the observations of AW, and DNS is perfectly suited for this task.

This chapter presents a numerical study of turbulence subjected to axisymmetric

contraction, with an emphasis on comparing the results to the experiments of AW.

The complete description of the flow field provided by DNS is used to understand the

evolution of the spectra in a manner that is difficult to measure experimentally.

The contents of this chapter are available in the published work described in Ap-

pendix A (Clay & Yeung, 2016), and were also presented at the 68th Annual Meeting

of the Division of Fluid Dynamics of the American Physical Society as described in

Appendix B. Beginning in §2.1, the numerical method, the time-dependent strain rate

used to model the wind tunnel contraction of AW, and the evolution equations for

spectra are presented. In §2.2, details are given on the pre-simulation approach along

with a listing of several simulations conducted for both physical (Reynolds number)

and numerical (domain size and grid resolution) reasons. In §2.3, the response of
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initially isotropic turbulence to the axisymmetric contraction is studied, and in §2.4

results are presented for the relaxation phase that begins when the strain rate is

turned off. A number of one-dimensional spectra are shown which display features

similar to those reported by AW. Finally, conclusions are summarized in §2.5.

2.1 Mathematical formulation and numerical approach

The use of a solution domain that deforms according to an axisymmetric time-

dependent strain rate, which is in turn constructed to model a laboratory turbulent

flow with a spatially-evolving cross-section, requires some special care in both the

conduct of the simulation and the subsequent data analysis, as discussed below.

2.1.1 Solution algorithm in a deforming, anisotropic domain

Rogallo (1981) introduced the coordinate transformation ξi = Bij(t)xj, in which the

deforming coordinate system ξi is related to the laboratory coordinates xi through the

metric tensor Bij(t). Summation over repeated Latin indices is implied throughout

the text. The deforming coordinates move with the mean flow, according to

dBij

dt
+Bik

∂〈Uk〉
∂xj

= 0 , (2.1)

where 〈Ui〉 is the mean velocity. In this coordinate system the turbulence is homoge-

neous, and periodic boundary conditions are applicable provided the mean velocity

gradients are uniform in space. The continuity and momentum equations become

Bji
∂ui
∂ξj

= 0 (2.2)

∂ui
∂t

+ uj
∂〈Ui〉
∂xj

+Bkj
∂uiuj
∂ξk

= −Bji
1

ρ

∂p

∂ξj
+ νBkjBlj

∂2ui
∂ξk∂ξl

, (2.3)
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where ui is the fluctuating velocity, p is the fluctuating pressure, ρ is the density, and

ν is the kinematic viscosity. Nonlinear terms are evaluated using a Fourier pseudo-

spectral method, and the numerical solution in Fourier space is advanced in time

using a second-order predictor-corrector scheme. Aliasing errors are mitigated by

using truncation and grid shifting in wavenumber space (Rogallo, 1981).

For irrotational axisymmetric contraction, the mean deformation tensor is given

by (Lee & Reynolds, 1985)

∂〈Ui〉
∂xj

=
2√
3
S(t)


1 0 0

0 −1
2

0

0 0 −1
2

 (2.4)

with S(t) ≥ 0. The domain is orthogonal at all times, such that only the diagonal

elements of Bij(t) are nonzero. Solving (2.1) leads to (for α = 1, 2, 3, no summation)

Bαα(t) = B0
ααe
−fα(t) , (2.5)

where B0
αα ≡ Bαα(0), and exp[fα(t)] is the total strain in each direction with

fα(t) =

∫ t

0

∂〈Uα〉
∂xα

dτ . (2.6)

Figure 2.1 shows a schematic of how the domain is deformed during the application of

strain. At any time t, the length of the domain on each side given by Lα = 2π/Bαα(t)

varies as Lα(t) = L0
α exp[fα(t)] where L0

α is the initial length. While the number

of grid points is fixed, the grid spacings and hence also resolution in each direction

vary. Correspondingly, the wavenumbers represented in each direction of the domain

are given by kα(nα, t) = nαBαα(t), where nα = −Nα/2 + 1, · · · , Nα/2, and Nα is

the number of grid points in the xα direction. The maximum resolved wavenumber

in each direction after truncation is kmax,α(t) =
√

2NαBαα(t)/3. As the simulation
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strain

x1x3

x2

Figure 2.1: Grid deformation under axisymmetric contraction with a total elongation
of 4 in the x1 direction. The grid metrics in the x2 and x3 directions are equal.

proceeds and the domain is deformed from its original shape, it is necessary to check

that the large scales continue to be well contained within the domain in all directions,

while the small scales likewise remain well resolved (Gualtieri & Meneveau, 2010).

2.1.2 A time-dependent strain as a model for experiment

In most wind tunnel experiments the change in cross-section is gradual, which results

in a smooth variation of the mean velocity with distance downstream along the wind

tunnel centerline (where measurements for nearly homogeneous turbulence are made).

The mean strain rate along the wind tunnel centerline is thus readily established as

a function of the spatial coordinates. However, as a fluid element passes through

the wind tunnel, the spatially-varying mean strain rate is experienced in a time-

dependent manner. To model the mean strain rates from experimental wind tunnels

in the time-dependent DNS, a spatially uniform, but time-dependent mean strain rate

is applied which corresponds to the local value of the mean strain rate that a fluid

element experiences as it passes through the wind tunnel (Pearson, 1959). This is

accomplished by introducing a convective time t as the time taken for a fluid element

traveling with the mean flow to reach a position x from a reference location xa. (Here

x alone, or xa etc., without tensor subscripts shall refer to distances measured along
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the wind tunnel centerline.) The relation between t and x is

t =

∫ x

xa

dξ

〈U1(ξ)〉
. (2.7)

According to (2.5-2.6), by time t the grid metric in the extensional direction will be

B11(t) = B0
11 exp

[
−
∫ t

0

∂〈U1〉
∂x1

dτ

]
. (2.8)

The integral in (2.8) can be evaluated through a change of variables, dτ = dx/〈U1(x)〉

(suggested by (2.7)). After some simplifications, the metric in x1 is given by

B11(t) = B0
11

〈U1(xa)〉
〈U1(x)〉

. (2.9)

Since the applied mean strain is volume-preserving, the product of the three diagonal

metric factors B11B22B33 is fixed, while axisymmetry requires B22 = B33. As a result,

the change in the transverse grid metrics is given by

B22(t)

B0
22

=
B33(t)

B0
33

=

√
〈U1(x)〉
〈U1(xa)〉

. (2.10)

Since in the simulation the turbulence is advanced in time instead of space, at each

time step from tn to tn+∆t, it is necessary to solve (2.7) for a new spatial location x,

so that the new metric factors can be evaluated according to (2.9-2.10). In addition,

at every time step the metric factors are used to form the viscous integrating factors

in Rogallo’s algorithm. The solution to (2.7) and the calculation of the integrating

factors are carried out using QUADPACK (Piessens et al., 1983).

In the experiments of AW, the mean streamwise velocity 〈U1(x)〉 along the center-

line of the wind tunnel is well described by an error function, which yields a Gaussian

profile for the mean extensional strain (see figure 2 of AW). Consider the functional
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Figure 2.2: Schematic of (a) mean velocity profile in experiments, and (b) examples
of non-dimensional strain rate Sτa as function of convective time in experiments and
DNS. In (b): for AW Reλ = 260 experiment, for AW Reλ = 40 experiment, for
S∗0 = 25 numerical, for S∗0 = 20 numerical, and for S∗0 = 15 numerical.

form

〈U1(x)〉 = a erf(bx) + c , x ∈ [xa, xb] , (2.11)

where the five parameters a, b, c, xa, and xb are chosen so the mean strain closely

matches the experiments in a non-dimensional sense, and the origin of the x-axis has

been placed at the location of maximum mean velocity gradient. In the experiments,

some appreciable strain also existed immediately upstream and downstream of the

physical beginning and ending locations of the contraction. To incorporate this feature

in the DNS, two intermediate locations xi and xf are specified satisfying xa < xi <

xf < xb (xi and xf correspond to the vertical lines in figure 2 of AW). Since these two

locations are about equally far from the location of maximum strain rate it suffices

to take xi = −xf . The straining “period” in the DNS is considered to be the entire

phase of the simulation during which there is nonzero mean strain, corresponding to

the physical distance between xa and xb. Figure 2.2(a) presents a sketch of an error

function mean velocity profile with these locations marked for later reference. While

xi and xf are used to specify the mean velocity variation, pre- and post-contraction
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statistics are reported at xa and xb, respectively.

For a systematic procedure for choosing the five curve-fit parameters noted above,

five constraints are needed to control both the spatial spread of the profile and its

maximum velocity gradient (which is proportional to the product ab). First, since

the value of c does not affect the strain rate, it is arbitrary provided it is large enough

to ensure that 〈U1(x)〉 > 0 for all x. Second, the velocity ratio 〈U1(xf )〉/〈U1(xi)〉 is

specified at a value close to that from the experiment. Third, the strain rate S at

x = 0, denoted by S0, corresponds to a non-dimensional strain S∗0 formed from S0

and a large-eddy time scale of the turbulence before strain is applied. Specifically,

define S∗0 = S0τa, where τa = (2K/〈ε〉)a, with K and 〈ε〉 being the turbulence kinetic

energy and the mean energy dissipation rate, respectively. Fourth, the starting lo-

cation xa is chosen to give a desired non-dimensional strain rate at xa based on the

experiments. Finally, the ending location xb is chosen to achieve a desired velocity

ratio 〈U1(xb)〉/〈U1(xa)〉, i.e., deformation, for the entire straining period.

Figure 2.2(b) shows a qualitative comparison of the non-dimensional strain rate

profiles obtained numerically from 3 values of S∗0 with experimental data derived

from AW at two values of the pre-strain Reynolds number. Experimental data in this

figure are obtained first by applying curve fits of a form similar to (2.11) and then

differentiating. The non-dimensional strain rates are plotted at convective times t in

the laboratory facility obtained using (2.7) and normalized by large-eddy turnover

times obtained from table 1 of AW. The numerical strain rates are obtained using the

aforementioned procedure with c = 10, bxf = 0.9, a velocity ratio 〈U1(xf )〉/〈U1(xi)〉 =

2.85, a starting non-dimensional strain rate of 0.3 at xa, and an overall velocity ratio

〈U1(xb)〉/〈U1(xa)〉 = 4. The resulting strain rate profiles are similar to those in the

experiments, suggesting that the procedures described here model the mean velocity

variation in the wind tunnel contraction well.
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2.1.3 Spectral evolution and rapid-distortion theory

To understand the dynamical processes underlying the change in shape of the energy

spectrum under applied strain, it is helpful to compute various terms in the spectral

evolution equations. In isotropic turbulence, computation of the nonlinear transfer

spectrum of the kinetic energy (e.g. Domaradzki & Rogallo (1990); Yeung et al.

(1995)) in spherical wavenumber shells is sufficient. However, this work must also

consider pressure-strain correlations and systematic anisotropy, which requires indi-

vidual components of spectra in one- and two-dimensional partitions of wavenumber

space. In addition, the mean strain distorts the wavenumbers on a deforming domain,

leading to transport of the spectrum in Fourier space (Pope, 2000).

In Fourier space, the fluctuating velocity on a deforming domain evolves by

dûi(k)

dt
= −ûj(k)

∂〈Ui〉
∂xj

− ikip̂(k)−Gi(k)− νk2ûi(k) , (2.12)

where the metric factors in (2.3) are expressed through time-dependence of the

wavevector k, p̂(k) is the Fourier coefficient of the fluctuating pressure, Gi(k) =

ikjûiuj, and i =
√
−1. It is important to distinguish between rapid pressure and

slow pressure, which respond to the mean flow and the velocity fluctuations respec-

tively. The pressure is written as p̂ = p̂r + p̂s, with both components obtained from

well-known Poisson equations. The spectral covariance Eij(k) ≡ 〈û∗i (k)ûj(k)〉 (where

superscript ∗ denotes complex conjugate) is complex-valued, although because mean

shear is absent only the diagonal (real) components are relevant. Its equation is

dEij(k)

dt
= Pij(k) + Πr

ij(k) + Πs
ij(k) + Tij(k)−Dij(k) . (2.13)

where terms on the right-hand side represent, respectively, production due to the mean

velocity gradient, redistribution due to rapid pressure and slow pressure, spectral
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transfer due to nonlinear terms, and dissipation due to viscosity. Specifically, these

terms are:

Pij(k) = −∂〈Uj〉
∂xm

Eim(k)− ∂〈Ui〉
∂xm

E∗jm(k) , (2.14)

Πr
ij(k) = iki〈û∗j(k)p̂r(k)〉∗ − ikj〈û∗i (k)p̂r(k)〉 , (2.15)

Πs
ij(k) = iki〈û∗j(k)p̂s(k)〉∗ − ikj〈û∗i (k)p̂s(k)〉 , (2.16)

Tij(k) = −
[
〈û∗i (k)Gj(k)〉+

〈
û∗j(k)Gi(k)

〉∗]
, (2.17)

Dij(k) = 2νk2Eij(k) . (2.18)

The angled brackets in these equations represent averaging over multiple realiza-

tions, i.e., ensemble averaging, which is performed for the majority of the simulations

detailed later. When axisymmetric contraction is applied the production term is neg-

ative for E11(k), but positive for E22(k) and E33(k), thus causing anisotropy directly,

especially at the large scales. The pressure-strain term exchanges energy among

the diagonal components Eαα(k) and is traceless due to incompressibility, for both

rapid and slow pressures. The rapid pressure is present only while strain is applied,

while slow pressure is also important during relaxation. Since nonlinear-transfer re-

distributes energy in Fourier space, each component of Tij(k) integrates to zero over

wavenumber space. Integrating (2.13) over all wavenumbers gives the Reynolds stress

transport equation for homogeneous turbulence, which is

d〈uiuj〉
dt

= −〈ujuk〉
∂〈Ui〉
∂xk

−〈uiuk〉
∂〈Uj〉
∂xk

+
2

ρ
〈prsij〉+

2

ρ
〈pssij〉−2ν

〈
∂ui
∂xk

∂uj
∂xk

〉
, (2.19)

where sij is the fluctuating strain rate.

In (2.13), only the production and rapid pressure-strain terms depend directly

on the mean strain rate. As a result, if the strain rate is very strong, i.e., very

rapid compared to the timescales of the turbulence, this equation can be simplified
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by retaining only Pij(k) and Πr
ij(k), while neglecting viscous dissipation and the

nonlinear effects of slow pressure and spectral transfer. The behavior of the energy

spectrum tensor can then be described by inviscid rapid distortion theory (RDT)

(Savill, 1987; Townsend, 1976). Although in practice the strain rates in experiments

and simulations are necessarily finite, comparisons with RDT theory are still useful

for a better understanding.

The use of a deforming domain, and hence a time-dependent set of wavevectors in

the simulations, requires some care when interpreting spectra. It would be useful to

relate the 1-D spectrum Eαα(kβ) to its equivalent representation E0
αα(k0

β) as a function

of the pre-strain wavenumbers k0
β. This would clearly show how a set of modes (those

perpendicular to an initial k1) are affected by the strain. The integrals of these spectra

over the corresponding wavenumbers kβ and k0
β are both equal to 〈u2

α〉. At any time

t during the straining period, the current and pre-strain wavenumbers are related by

kβ(t) = k0
βBββ(t)/B0

ββ , (2.20)

where B0
ββ/Bββ(t) is the total deformation in the xβ direction. A change of variables

between the integrals in kβ and k0
β then gives the relation

E0
αα(k0

β) ≡ Eαα(kβ)Bββ(t)/B0
ββ . (2.21)

Following AW, most of the 1-D spectral results are presented in terms of the pre-

strain wavenumbers during the application of strain, and in terms of the post-strain

wavenumbers (which are fixed) during the relaxation period.

Statistics in axisymmetric turbulence are rotationally symmetric about a preferred

direction λ (Batchelor, 1946), which in this study is the extensional direction. Fig-

ure 2.3 shows a decomposition of Fourier space motivated by this rotational symmetry,

such that spectral quantities are expressed as functions of k1 and the wavenumber
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Figure 2.3: Ring decomposition of wavenumber space for axisymmetric turbulence.
The axis of axisymmetry λ is in the k1 direction, and the ring is perpendicular to λ.
The longitude with respect to k2 is θ and the colatitude with respect to λ is φ.

magnitude in the cross-sectional plane kr =
√
k2

2 + k2
3. The axisymmetry can also be

expressed by kr = k sinφ, where k =
√

k · k, and 0 ≤ φ ≤ π is the colatitude with

respect to λ. The spectral covariance Eij(k) defined earlier is a discrete version of the

velocity spectrum tensor Φij(k) (whose integral in wavenumber space gives 〈uiuj〉).

The axisymmetric spectrum tensor is defined as

Aij(k1, kr) =

∫ 2π

0

Φij(k)kr dθ , (2.22)

from which the 1-D spectra can be recovered by

Eij(k1) = 2

∫ ∞
0

Aij(k1, kr) dkr , (2.23)

where the factor of 2 is used to collect contributions from both positive and negative

values of k1. Axisymmetric representations of the spectra are useful in studies of

rotating (Clark di Leoni et al., 2014) and stably stratified turbulent flows (Godeferd

& Staquet, 2003). Evolution equations for the axisymmetric spectra and 1-D spec-

tra are readily obtained by integration of (2.13) over rings and planes in wavenum-

ber space, respectively. For isotropic turbulence, the contours of the axisymmetric

energy spectrum EA(k1, kr) ≡ 1
2
Aii(k1, kr) multiplied by 1/ sinφ are circles in the
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(k1, kr) plane (Mininni et al., 2012). In practice, the axisymmetric spectra are formed

by summing over Fourier modes residing in rings of finite thickness. Because the

computational space is Cartesian, the distribution of modes in rings at small kr is

significantly uneven, which can lead to some noise in contours of the axisymmetric

spectra. A node-density correction factor is applied in a manner similar to those used

for three-dimensional spectra collected into discrete spherical shells in wavenumber

space (Eswaran & Pope, 1988).

2.2 Pre-simulation and the choice of numerical parameters

In the simulations the effects of strain must be applied to a velocity field that is

physically well-developed, well-sampled, and well-resolved. To produce such an initial

state, a “pre-simulation” is carried out for decaying isotropic turbulence evolving from

a Gaussian velocity field with a specified energy spectrum. Usually, the mean strain

rate is turned on when the turbulence shows clear evidence of a power-law decay

in its kinetic energy, and of non-Gaussianity in the statistics of velocity gradient

fluctuations. The initial energy spectrum chosen is (Pope, 2000, pp. 232–234)

E(k) = CK 〈ε〉2/3 k−5/3fL(kL)fη(kη) , (2.24)

where fL(kL) controls the shape of the energy containing range, fη(kη) gives expo-

nential decay in the dissipation range, k is the wavenumber magnitude, CK is the

Kolmogorov constant (taken as 1.62 (Yeung & Zhou, 1997)), 〈ε〉 is the mean dissi-

pation rate, L is a measure of the size of the large scales, and η = (ν3/〈ε〉)1/4 is the

Kolmogorov length scale. Other constants appearing in the model spectrum functions

include p0 = 2, β = 5.2, cη = 0.4, and cL = (1.262CK)3 ≈ 8.55. With p0 = 2, the

fitting function fL(kL) gives E(k) ∼ k2 for small k.

The non-cubic and deforming nature of the solution domain implies that both
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large-scale sampling and small-scale resolution are dependent on time and direction.

The shape of the pre-simulation domain is illustrated in the left of figure 2.1. Large-

scale sampling is measured by comparing the integral length scales with the shortest

side of the domain, and small-scale resolution by comparing the Kolmogorov scales

with the coarsest grid spacing. As the turbulence decays and the length scales grow,

large-scale sampling worsens, but small-scale resolution improves. To ensure that

the large scales are initially well-sampled, the spectrum parameter L is chosen to

be a small fraction of the shortest dimension L0
1. Resolution of the small scales

in cubic domains is often expressed by the non-dimensional parameters ∆x/η and

kmaxη. Although good resolution requires ∆x/η . 2 (corresponding to kmaxη & 1.5)

(Donzis et al., 2008), a larger initial value of ∆x/η for a pre-simulation is acceptable

since the resolution improves as the turbulence decays. In this work, directional

resolution parameters ∆α/η (∆α ≡ ∆xα is the grid spacing in the xα direction) must

be considered because the grid spacing in each direction varies. For the pre-simulation,

the grid spacing is coarsest in the x2 and x3 directions, so an initial value of η is

specified such that ∆2/η (which equals ∆3/η) takes an acceptable value.

Table 2.1 summarizes the pre-simulation initial conditions in this work. Run 1

is a baseline, low Reynolds number simulation comparable to the lowest Reynolds

number experiment reported by AW. The modest size of this run allows for multi-

ple independent realizations (Overholt & Pope, 1996), which is useful for statistical

reliability since time averaging is not applicable. Runs 2 to 5 are effectively at the

same Reynolds number as Run 1, but designed to check the influence of the domain

size and grid resolution. In Runs 2 and 3, the domain size is unchanged, but the

grid spacing is refined by a factor of 2 first along the x1 direction, and then the x2

and x3 directions. Run 4 shows, relative to Run 1, the effects of improved small-scale

resolution in the x1 direction accompanied by improved large-scale sampling in the

x2 and x3 directions. Run 5 presents a case in which the domain size is doubled in
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Table 2.1: Initial conditions for the pre-simulations. For each run, “count” is the
number of independent simulations used for ensemble averaging. In the first block,
number of grid points and initial grid metric factors are Nα and B0

αα, respectively.
The second block lists the Taylor-scale Reynolds number and indicators of large-scale
sampling and small-scale resolution. Longitudinal integral length scales are `αα and
η is the Kolmogorov length scale. Domain length and grid spacing in the xα direction
are given by Lα and ∆α, respectively. Length scales L and η0 are inputs to the model
spectrum function. Kinematic viscosity for all runs is ν = 2.8×10−3 (arbitrary units).

Run 1 2 3 4 5 6 7 8 9

Count 16 4 4 4 4 4 4 1 1

N1 512 1024 1024 1024 1024 1024 2048 4096 4096

N2 = N3 512 512 1024 1024 1024 1024 2048 4096 4096

B0
11 1 1 1 1 1/2 1 1 1 1/2

B0
22 = B0

33
1

2
√

2
1

2
√

2
1

2
√

2
1

4
√

2
1

4
√

2
1

2
√

2
1

2
√

2
1

4
√

2
1

4
√

2

R0
λ 39.7 39.6 39.0 39.7 39.7 67.7 113 112 113

L0
1/L 8 8 8 8 16 8 8 8 16

(L1/`11)0 16.7 16.8 16.6 16.7 33.4 18.3 19.0 19.1 37.5

(L2/`22)0 47.7 47.2 48.3 93.1 92.5 50.2 54.1 112.8 106.7

(∆1/η)0 1.31 0.65 0.65 0.65 1.31 1.31 1.31 0.65 1.31

(∆2/η)0 3.70 3.70 1.85 3.70 3.70 3.70 3.70 3.70 3.70

all directions compared to Run 1, while the grid spacings are unchanged.

In Runs 6 and 7, the Reynolds number is increased by using the same domain

size (i.e., the same grid metrics) as Run 1, and refining the grid spacing to resolve

a smaller initial Kolmogorov scale. Two simulations on 40963 grids (Runs 8 and 9)

are also conducted to investigate the influence of the domain size and grid resolution

on Run 7. Compared to Run 7, Run 8 gives improved small-scale resolution in the

x1 direction, and improved large-scale sampling in the x2 and x3 directions. Finally,

Run 9 improves large-scale sampling compared to Run 7 by doubling the domain

length in all directions.

Table 2.2 summarizes the state of each run at the end of the pre-simulation pe-

riod, just before strain is applied. The turbulence kinetic energy, dissipation rate,

and Taylor-scale Reynolds number at this time (designated by subscript or super-
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Table 2.2: Simulation parameters at the onset of straining, labeled with subscript
or superscript a. Parameters with subscript 0 taken from initial conditions for the
pre-simulations (see Table 2.1 for R0

λ). In the second block `11 and `22 are longitudinal
integral length scales, and `21 is the transverse integral length scale in the x1 direction.
The domain does not deform during the pre-simulation, so La1 = L0

1 and La2 = L0
2.

With the shorthand ui,j = ∂ui/∂xj the third block shows the skewness (S) and flatness
(F ) of longitudinal velocity gradients.

Run 1 2 3 4 5 6 7 8 9

Ka/K0 0.463 0.463 0.462 0.463 0.463 0.447 0.446 0.446 0.447

〈ε〉a/〈ε〉0 0.233 0.232 0.224 0.233 0.233 0.248 0.290 0.289 0.290

Ra
λ 38.1 38.1 38.1 38.1 38.1 60.9 93.4 93.4 93.8

(L1/`11)a 12.9 12.9 12.7 12.9 25.7 14.6 15.4 15.2 30.5

(L1/`21)a 25.5 24.8 25.2 25.3 50.6 28.0 31.0 30.7 62.4

(L2/`22)a 37.2 36.5 37.8 73.1 71.7 40.4 42.3 91.4 84.6

(∆1/η)a 0.90 0.45 0.45 0.45 0.90 0.92 0.97 0.48 0.96

(∆2/η)a 2.54 2.54 1.27 2.54 2.54 2.61 2.73 2.73 2.73

S(ua1,1) -0.513 -0.509 -0.508 -0.513 -0.511 -0.516 -0.530 -0.530 -0.529

S(ua3,3) -0.491 -0.489 -0.505 -0.490 -0.489 -0.492 -0.497 -0.499 -0.498

F (ua1,1) 4.15 4.14 4.17 4.16 4.15 4.60 5.10 5.12 5.10

F (ua3,3) 4.08 4.07 4.16 4.07 4.07 4.50 4.97 4.97 4.96

script a) are all (as a result of decay) lower than their initial values (designated by

subscript or superscript 0). Large-scale sampling has worsened by this time, as in-

dicated by the larger integral length scales, but small-scale resolution has improved.

The integral length scales approximately satisfy `11 = 2`21, which is indicative of

isotropy. Non-Gaussianity is evident in the skewness factors of longitudinal velocity

gradients reaching about −0.5, and the flatness factors reaching values that increase

with Reynolds number. It appears that u1,1 ≡ ∂u1/∂x1 is slightly more non-Gaussian

than u3,3 ≡ ∂u3/∂x3, which may be the result of better small-scale resolution in the

x1 direction compared to the x2 and x3 directions. In all runs, the ratios of transverse

to longitudinal velocity gradient variances are within 0.5% of the isotropic value of

2. All components of the Reynolds stress anisotropy tensor are 3 × 10−3 or smaller,

showing a state of isotropic turbulence despite the non-cubic shape of the domain.
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Table 2.3: Post-contraction (subscript or superscript b) parameters and post- to pre-
contraction parameter ratios. See tables 2.1 and 2.2 for descriptions of symbols.

Run 1 2 3 4 5 6 7 8 9

Bb
11 1/4 1/4 1/4 1/4 1/8 1/4 1/4 1/4 1/8

Bb
22 = Bb

33
1√
2

1√
2

1√
2

1
2
√

2
1

2
√

2
1√
2

1√
2

1
2
√

2
1

2
√

2

(L1/`11)b 60.1 59.6 59.1 60.3 121 75.3 83.9 81.4 168

(L1/`21)b 19.0 18.5 18.8 18.8 37.7 20.5 22.1 22.2 44.3

(L2/`22)b 24.1 23.6 24.8 47.6 46.6 26.3 27.1 57.9 54.3

(∆1/η)b 4.34 2.17 2.17 2.17 4.34 4.31 4.30 2.15 4.30

(∆2/η)b 1.53 1.53 0.77 1.53 1.53 1.52 1.52 1.52 1.52

Kb/Ka 1.56 1.57 1.57 1.57 1.57 1.57 1.59 1.59 1.59

〈ε〉b/〈ε〉a 2.13 2.12 2.13 2.13 2.13 1.85 1.54 1.54 1.54

〈u2
1〉b/〈u2

1〉a 0.201 0.199 0.200 0.201 0.202 0.222 0.244 0.246 0.244

〈u2
2〉b/〈u2

2〉a 2.25 2.26 2.24 2.25 2.25 2.24 2.26 2.26 2.26

〈u2
2,1〉b/〈u2

1,1〉b 4.27 4.27 4.27 4.28 4.27 3.05 2.27 2.28 2.27

〈u2
3,2〉b/〈u2

2,2〉b 2.98 2.98 2.98 2.98 2.98 2.96 2.90 2.90 2.90

S(ub1,1) 0.0154 0.0497 0.0632 0.0447 0.0175 0.345 0.397 0.493 0.399

S(ub3,3) -0.0591 -0.0594 -0.0579 -0.0596 -0.0613 -0.102 -0.178 -0.180 -0.178

F (ub1,1) 6.55 6.85 6.90 6.73 6.53 9.72 11.2 12.7 11.2

F (ub3,3) 3.43 3.42 3.43 3.43 3.43 3.57 3.82 3.85 3.82

2.3 Application of strain

Following the pre-simulation a time-dependent axisymmetric contraction is applied

until the domain elongates by a factor of 4 in the x1 direction. Using the approach and

parameters detailed in §2.1.2, the simulations are run with mean strain rates char-

acterized by a peak non-dimensional strain S∗0 = 25. In §2.3.1 single-point moments

are presented, and in §2.3.2 the evolution of the spectra is studied.

2.3.1 Single-point moments

First, table 2.3 provides results that summarize the post-contraction state of each

run, and will be followed by figures that show the evolution of important statistics

over the complete straining period. The post-contraction shape of the domains is as
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shown in the right of figure 2.1, with a decrease in B11 and increase in B22 and B33

relative to their pre-contraction values in table 2.1. As the domain deforms and the

physical length scales of the turbulence evolve, large-scale sampling and small-scale

resolution (second block in table 2.3) change. The post-contraction domains are still

large compared with the integral length scales, indicating that large-scale sampling

is still adequate. It is worth noting that the ratio L1/`21 has dropped compared

to its pre-contraction value, despite a factor of 4 increase in L1. This implies a

substantial increase in the transverse integral length scale `21, which is consistent with

the formation of coherent longitudinal vortices in the extensional direction (Rogers &

Moin, 1987). As expected, small-scale resolution worsens in the direction where the

domain is stretched (x1), but improves in the directions of compression (x2 and x3).

Continuing in table 2.3, the turbulence kinetic energy is amplified in all cases,

with the amplification ratio nearly independent of the Reynolds number. The dis-

sipation rate also increases, but less so at higher Reynolds number. It is clear that

the turbulence becomes anisotropic, as velocity fluctuations in the extensional and

compressive directions are suppressed and amplified, respectively. Anisotropy at the

small scales is also seen in the statistics of velocity gradient fluctuations, such as the

ratio of transverse to longitudinal velocity gradient variances, which differ from the

isotropic value of 2. Apparently, at higher Reynolds numbers, the ratio 〈u2
2,1〉/〈u2

1,1〉

becomes less anisotropic but 〈u2
3,2〉/〈u2

2,2〉 remains close to 3, which (as discussed later)

is an indication of quasi two-dimensionality in the cross-sectional plane.

Third and fourth moments of longitudinal velocity gradients are also included in

table 2.3. In 3-D incompressible isotropic turbulence the skewness of the longitudi-

nal velocity gradient is negative, and related to the phenomenon of vortex stretching

(Batchelor, 1953; Tavoularis et al., 1978). However, as reported by AW and others

(Mills & Corrsin, 1959; Sjögren & Johansson, 1998), the simulations show that ax-

isymmetric contraction causes the skewness of ∂u1/∂x1 to undergo a change in sign,
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Table 2.4: Post-contraction skewness and flatness of longitudinal velocity gradients
predicted by rapid-distortion theory.

Run 1 2 3 4 5 6 7 8 9

S(ub1,1) -0.665 -0.663 -0.660 -0.665 -0.663 -0.683 -0.706 -0.706 -0.706

S(ub3,3) -0.0247 -0.0221 -0.0245 -0.0257 -0.0260 -0.0271 -0.0251 -0.0253 -0.0255

F (ub1,1) 5.08 5.06 5.05 5.08 5.07 5.64 6.26 6.26 6.24

F (ub3,3) 4.18 4.17 4.28 4.18 4.17 4.67 5.16 5.16 5.16

with its magnitude increasing with the Reynolds number. In contrast, the skewness

of ∂u3/∂x3 remains negative but its magnitude is reduced compared to that observed

in isotropic turbulence. At the same time, there is an increase in the flatness of

∂u1/∂x1 and a decrease in the flatness of ∂u3/∂x3 during the contraction. The flat-

ness of ∂u1/∂x1 also increases with Reynolds number, which is consistent with AW.

A comparison of the post-contraction flatness of ∂u1/∂x1 between runs with differ-

ent resolution (Run 2 and 8 versus 1 and 7, respectively) suggests that higher-order

derivative statistics in this work are affected by finite resolution in the extensional

direction. However, the main interest of this study is lower-order quantities such as

spectra, for which the lower-resolution simulations are adequate.

It is also useful to compare DNS, which uses a finite strain rate, to RDT. Following

the pre-simulation, the Fourier coefficients of the velocity field are evolved according to

well-known relations for inviscid RDT (Townsend, 1976; Lee & Reynolds, 1985). Each

velocity field is subjected to a 4:1 area ratio axisymmetric contraction. Statistics are

then ensemble averaged over all realizations for each run, e.g., over the 16 simulations

comprising Run 1. RDT predicts Kb/Ka = 2.1 and 〈ε〉b/〈ε〉a = 5.5 for all runs, which

are considerably different than the DNS results presented in table 2.3. The extent of

large-scale anisotropy is predicted well by RDT; it gives bb11 = −0.3 and bb22 = 0.15

for all runs. There is more discrepancy between the DNS and RDT when examin-

ing velocity derivative statistics. For example, RDT estimates 〈u2
2,1〉b/〈u2

1,1〉b = 8,
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Figure 2.4: Evolution of (a) K and 〈ε〉 normalized by initial values for Runs 4, 6, and
8, (b) budget for dK/dt normalized by 〈ε〉a for Runs 4 and 8, and (c) non-dimensional
strain rates for Runs 4, 6, and 8. In (a), solid curves (red) for K(t)/Ka for the three
runs are almost coincident, and dashed curves (blue) are for 〈ε(t)〉/〈ε〉a, with Rλ

increasing in the direction of the arrow. In (b), dashed curves with open symbols for
Run 4, and solid curves with filled symbols for Run 8: and for production, and

for minus the dissipation, and and for overall rate of change. In (c), mean strain
rate normalized by large eddy turnover time τ (upper red curves) and Kolmogorov
time scale τη (lower blue curves), with Rλ increasing in the directions of arrows.

which is markedly different from the DNS results. The velocity derivative statistic

〈u2
3,2〉b/〈u2

2,2〉b, however, takes a post-contraction value of 3 with RDT, which is very

similar to the DNS results. Table 2.4 shows the RDT predictions for higher-order

velocity derivative statistics. While RDT fails to predict a positive value for the

skewness of ∂u1/∂x1, a small negative value of the skewness of ∂u3/∂x3 is consis-

tent with the DNS at lower Reynolds numbers. The large increase in the flatness

of ∂u1/∂x1 at high Reynolds numbers, and the decrease in the flatness of ∂u3/∂x3

observed in the DNS are not predicted by RDT.

For information on the evolution of the turbulence during the period of axisym-

metric contraction, and to facilitate comparison with previous studies, it is useful

to show results against the total deformation at a given time, rather than time it-

self. Figure 2.4 shows, as a function of L1(t)/L0
1 (which ranges from 1 to 4 for a 4:1

contraction ratio), in (a) the evolution of turbulence kinetic energy and dissipation
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rate, in (b) various terms in the turbulence kinetic energy budget, and in (c) the

non-dimensional mean strain rates. To focus on the effects of the Reynolds number

results are selected from Runs 4, 6, and 8 (see table 2.1). For homogeneous turbulence

the turbulence kinetic energy budget is governed by production and dissipation, as

dK

dt
= −〈uiuj〉

∂〈Ui〉
∂xj

− 〈ε〉 . (2.25)

It can be seen that both K and 〈ε〉 initially decay since it takes finite time for produc-

tion (initially zero) to grow to exceed the dissipation. Subsequently, as both variables

grow, the evolution of K is almost independent of the Reynolds number, while dissi-

pation grows less rapidly at high Reynolds number. Because of the form of the strain

rate profile (figure 2.2), both K and 〈ε〉 decrease towards the end of the straining

period when the strain rate is weak. The production term in frame (b) is driven by

the mean flow and is essentially the same for all Reynolds numbers simulated. It is

also dominant over dissipation during the straining period, which explains why the

kinetic energy evolution is nearly identical for all runs. The non-dimensional strain

rates in frame (c) indicate that the strain rates are strong compared to the time scales

of the large-scale motions, but actually weak from the perspective of the small scales.

The production of turbulence kinetic energy by mean strain requires anisotropy in

the Reynolds stresses, which is expressed by the anisotropy tensor bij = 〈uiuj〉/(2K)−

δij/3, and its second and third coordinate-frame invariants, given by

η = (bijbji/6)1/2 ; ξ = (bijbjkbki/6)1/3 , (2.26)

where here η is not to be confused with the Kolmogorov scale. For isotropic turbulence

subjected to axisymmetric contraction the invariants satisfy

ξ = −η . (2.27)
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Figure 2.5: Evolution of (a) Reynolds stresses normalized by q2
a = 2Ka, (b) compo-

nents of the Reynolds stress anisotropy tensor, and (c) anisotropy tensor invariants
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a, b11, and ξ in each respective figure. Sym-
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a, b22, and η in each respective figure. Dashed lines in (c) for
two-dimensional isotropic limit.

Figure 2.5 shows for Runs 4 and 8, (a) the evolution of the Reynolds stresses, (b)

the evolution of the anisotropy tensor elements b11 and b22, and (c) the invariants ξ

and η. The results suggest that the large-scale anisotropy is completely determined

by the total deformation at any time t, but is independent of the Reynolds number.

Since the large-scale anisotropy depends only on the total deformation, the anisotropy

development is the same as observed in simulations with constant strain rates (Lee &

Reynolds, 1985), and can be predicted almost exactly by RDT. Although (2.27) is in

principle exact, in numerical results it is not guaranteed if the large scales contributing

the most to the Reynolds stress tensor are not sampled well in a domain of finite size.

The present results show that the large scales are sufficiently well-sampled.

The development of anisotropy in the Reynolds stress tensor can be analyzed

further using the Reynolds stress transport equation (2.19). Figure 2.6 presents the

terms in the balance equations for (a) 〈u2
1〉 and (b) 〈u2

2〉, using data from Runs 4 and

8. For the production terms, in this flow P11 < 0 whereas P22 > 0. The rapid pressure

strain term quickly counteracts the anisotropy generated by the production term. The
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Figure 2.6: Reynolds stress budgets normalized by initial dissipation rate 〈ε〉a during
the application of strain for Run 4 (dashed curves with open symbols) and Run 8
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1〉/dt in (a), and budget
terms for d〈u2

2〉/dt in (b): and for production, and for rapid pressure-strain,
and for slow pressure-strain, and for dissipation, and the sum of all budget

terms marked by and .

slow pressure strain term, on the other hand, becomes significant only at later times,

and is more important at higher Reynolds number. In frame (b) the production effect

is clearly the dominant term in the Reynolds stress budget for 〈u2
2〉, being resisted

only weakly by the rapid pressure at early times and viscous dissipation at later

times. In both frames the production terms (of either sign) reach peak amplitude at

intermediate times, which is a consequence of the time-dependent strain rate and is

different from results from simulations of constant strain (Lee & Reynolds, 1985).

Although large-scale statistics show little dependence on the Reynolds number,

small-scale statistics, such as the dissipation rate in figure 2.4(a), show a strong

Reynolds number dependence. It was already observed in table 2.3 that the small

scales become anisotropic during the straining period. The geometry of axisymmetric

contraction also suggests that vorticity components in different directions (ω1 versus

ω2 and ω3) will have different statistics. It is therefore important to investigate the

behavior of both vorticity and velocity gradient statistics, with data given in figure 2.7.
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Figure 2.7: Evolution of (a) mean-square vorticities normalized by dissipation rate
and (b) velocity derivative statistics for Run 4 (dashed curves with open symbols)
and Run 8 (solid curves with filled symbols). In (a), and for ν〈ω2

1〉/〈ε〉a, and
for ν〈ω2

2〉/〈ε〉a, and and for ν〈ω2
3〉/〈ε〉a. Let ui,j = ∂ui/∂xj. In (b), and

for
〈
u2

2,1

〉
/
〈
u2

1,1

〉
, and for

〈
u2

1,2

〉
/
〈
u2

2,2

〉
, and for −

〈
u2

1,1

〉
/ 〈u2,3u3,2〉, and

for
〈
u2

3,2

〉
/
〈
u2

2,2

〉
, and and for −

〈
u2

2,2

〉
/ 〈u2,3u3,2〉. Values for

〈
u2

3,2

〉
/
〈
u2

2,2

〉
and −

〈
u2

2,2

〉
/ 〈u2,3u3,2〉 in two-dimensional isotropic turbulence marked by horizontal

dashed lines at 3 and 1, respectively.

In homogeneous turbulence one can write

〈ε〉 = ν
(
〈ω2

1〉+ 〈ω2
2〉+ 〈ω2

3〉
)
. (2.28)

Figure 2.7(a) shows, for Runs 4 and 8, the three mean-squared vorticities, normal-

ized by the viscosity and the pre-contraction dissipation rate. As expected from

the geometry, axisymmetric contraction amplifies and aligns vorticity in the exten-

sional direction while reducing vorticity in the compressive directions (Rogers & Moin,

1987), but the effects are weaker at higher Reynolds number. This dependence on

the Reynolds number can be understood by noting that (lower curves in figure 2.4(c))

as the Reynolds number increases (in the order Runs 4, 6, 8) the value of the non-

dimensional strain rate Sτη becomes smaller. In other words, as the range of time

scales in the flow widens with increasing Reynolds number, the strain rate becomes

weaker with respect to the small scales. Hence, at higher Reynolds numbers, the
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fluctuating vorticity is less responsive to the applied strain, as reflected in the weaker

amplification of 〈ω2
1〉 in figure 2.7(a).

To further assess departures from local isotropy using statistics of the velocity

gradients, it is useful to compare the simulation data with a number of relations that

apply for 3-D incompressible isotropic turbulence, such as (with α 6= β)

〈(∂uα/∂xβ)2〉 = 2〈(∂uα/∂xα)2〉 , (2.29)

〈(∂uα/∂xα)2〉 = −2〈(∂uα/∂xβ)(∂uβ/∂xα)〉 . (2.30)

Figure 2.7(b) shows the evolution of ratios formed from (2.29) and (2.30) during the

straining period. The velocity derivative statistics are initially isotropic, but depart

from isotropy as the strain is applied. The statistics are more anisotropic at the lower

Reynolds number because the strain rate is more rapid with respect to the small

scales. In their experiments, AW measured 〈u2
2,1〉/〈u2

1,1〉 for a wide range of Reynolds

numbers (see figure 8 in AW). The post-contraction values for this statistic in the

DNS are similar to those reported by AW, and also remain closer to the isotropic

value as the Reynolds number is increased.

It is worth noting that figure 2.7(b) shows that during straining, 〈u2
3,2〉/〈u2

2,2〉

and −〈u2
2,2〉/ 〈u2,3u3,2〉 approach asymptotic limits 3 and 1, respectively. This can

be explained by generalizing (2.29) and (2.30) to n-dimensional isotropic turbulence,

where n ≥ 2. For α 6= β (Pope, 2000; Gotoh et al., 2007), the relations are

〈(∂uα/∂xβ)2〉 = (n+ 1)/(n− 1)〈(∂uα/∂xα)2〉 , (2.31)

〈(∂uα/∂xα)2〉 = −(n− 1)〈(∂uα/∂xβ)(∂uβ/∂xα)〉 . (2.32)

Substituting n = 2 into (2.31) and (2.32), the respective limiting values observed

in figure 2.7(b) for 〈u2
3,2〉/〈u2

2,2〉 and −〈u2
2,2〉/ 〈u2,3u3,2〉 are obtained. This suggests

that the small-scales under an axisymmetric contraction of sufficient strength tend to
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Figure 2.8: Axisymmetric energy spectrum for (top row) Run 4 and (bottom row) Run
8 (left column) before the application of strain, (middle column) half-way through
straining (L1/L

0
1 = 2), and (right column) at end of the straining period. Contour

levels decrease by a factor of 10. Spectra plotted against the instantaneously distort-
ing wavenumbers, and multiplied by 2 to recover K when integrating over kr and
non-negative k1. Simulation cutoff wavenumbers marked by outermost black bound-
ary. Spectra normalized by sinφ = kr/k to obtain circular contours in isotropic
turbulence; data for kr = 0 omitted from plot.

asymptotically approach the limiting state of isotropic turbulence in two dimensions.

At the same time, a number of relations for velocity gradient statistics conforming

to a state of local axisymmetry (George & Hussein, 1991) are well verified in the

DNS data. In other words, the post-contraction state of the small scales is one

of local axisymmetry with velocity gradients in the extensional direction becoming

asymptotically small compared to gradients in the compressive directions. (This is

supported by the line for the ratio−
〈
u2

1,1

〉
/ 〈u2,3u3,2〉 in the figure approaching almost

zero on the scales chosen.)
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2.3.2 Spectral evolution

Results discussed above indicate that anisotropy in the mean flow and the large scale

motions ultimately leads to strong anisotropy in the small scales. This observation

implies that isotropy in the flow is scale-dependent, which is best explored through

spectral quantities in wavenumber space. In this section results are reported for an

axisymmetric representation of the energy spectrum, 1-D spectra like those measured

in the experiments of AW, and various terms in the spectral energy budget.

Figure 2.8 shows contour plots of the axisymmetric energy spectrum EA(k1, kr) for

Runs 4 and 8 before the straining period (left column), half-way through the straining

period (middle column), and at the end of the straining period (right column). If the

turbulence is isotropic the energy spectrum would depend only on k = (k2
1 + k2

r)
1/2,

which means isocontours of EA(k1, kr) (after the normalization discussed in §2.1.3)

would be circles in the (k1, kr) plane. This is indeed the case for the pre-contraction

spectra in frames (a) and (d), except that the shape of the contours is distorted

near the simulation cutoff wavenumbers, which are marked by the outermost black

elliptical boundaries in the plots. As the strain is applied (from the left column

to the right column), the spectra change significantly. The post-contraction energy

spectra in frames (c) and (f) are highly anisotropic at all scales of motion (with non-

circular contours), which is consistent with the large-scale and small-scale anisotropy

observed for single-point moments in §2.3.1. The contours in frame (c) for Run 4

show evidence of stronger anisotropy than those in frame (f) for Run 8. This is in

agreement with the results for single-point moments, which showed that the small

scales become more anisotropic during the application of strain at lower Reynolds

number. During straining, the domain is lengthened in the x1 direction but shortened

in x2 and x3. This results in wavenumber distortion, where the wavenumbers in k1

decrease while those in k2 and k3 increase. Close observation of figure 2.8 reveals

that the cutoff wavenumber boundary for each simulation is distorted as the strain
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Figure 2.9: Comparison of pre- and post-contraction longitudinal (left column) and
transverse (right column) 1-D spectra, for DNS Run 4 at low Reynolds number (top
row), DNS Run 8 at higher Reynolds number (middle row), and the high Reynolds
number experiment of AW (bottom row), all shown as functions of pre-contraction
wavenumbers. Experimental data are reproduced from figure 11 of AW by permission
of the authors. Solid lines (black) for pre-contraction DNS or experiment, dashed
(red) for post-contraction DNS or experiment, and dashed-dotted (blue) for post-
contraction RDT. Insets in each frame show the same spectra but multiplied by the
wavenumber (e.g., k0

1E
0
22(k0

1)), such that the areas under the curve on log-linear scales
give the mean-squared velocities. For the DNS, the transverse spectra E0

22(k0
1) and

E0
33(k0

1) are averaged with each other when producing frames (b) and (d).
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is applied. Wavenumber distortion causes energy to accumulate in long-wavelength

(low wavenumber) modes in the extensional direction, which is consistent with the

formation of long coherent vortical structures in the extensional direction (Rogers &

Moin, 1987).

To characterize the scale-dependent anisotropy between different velocity compo-

nents, figure 2.9 shows the 1-D spectra of the u1 and u2 velocity fluctuations for low

and high Reynolds numbers in the DNS (top and middle rows, respectively), com-

pared with the highest-Reynolds-number data in the AW experiments (bottom row,

from AW figure 11). The spectra are, based on rationale discussed earlier in §2.1.3, all

shown as functions of the initial (pre-contraction) wavenumbers. The effect of strain

on E0
11(k0

1) is a decrease at low wavenumbers but an increase at high wavenumbers.

As the Reynolds number increases, a pronounced rightward shift is seen to develop

in the peak of k0
1E

0
11(k0

1) in both the DNS and experiment (red dashed lines in the

insets of frames (c) and (e)). The effect of the mean strain on E0
22(k0

1) is, in contrast,

an increase in the spectrum at all values of k0
1, with a milder change in the spectrum

shape and a weaker Reynolds number dependence. The suppression of 〈u2
1〉 and am-

plification of 〈u2
2〉 are also indicated by changes in the area under the curves in the

inset to each figure.

Figure 2.9 also contains inviscid RDT results for comparison. While the theory ap-

pears to reasonably predict the shape of E0
11(k0

1) at low wavenumbers, it can be seen

that the theory fails to capture the rightward shift in k0
1E

0
11(k0

1) at high Reynolds

number discussed above, while it over-predicts the amplification of E0
22(k0

1) at low

wavenumbers. This indicates the physical mechanisms neglected in RDT, namely

nonlinear energy transfer, slow pressure-strain, and viscous dissipation, play a signif-

icant role in the evolution of the spectral structure of the Reynolds stresses.

The roles and relative importance of physical processes governing the evolution of

the spectra described above can be studied using the spectral budget equation (2.13),
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Figure 2.10: Balance terms from (2.13) contributing to the evolution of the 1-D
compensated spectra, normalized by the pre-contraction dissipation rate and shown
as functions of pre-contraction wavenumbers. Top row: L1(t)/L0

1 = 2.5 from Run
4; middle row: L1(t)/L0

1 = 2.5 from Run 8; bottom row: L1(t)/L0
1 = 3.5 from Run

8. Left and right columns show data for k0
1E

0
11(k0

1) and k0
1E

0
22(k0

1), respectively. In
all frames: (black solid) for production, (magenta) for rapid pressure-strain,
(green) for slow pressure-strain, (blue) for nonlinear transfer, (red) for minus
the dissipation, and + (black dashed) for total rate of change. Data for k0

1E
0
22(k0

1)
averaged with data for k0

1E
0
33(k0

1) due to the axisymmetry of the turbulence.

which was written for the case of a single Fourier mode. The balance equations for

the 1-D spectra parameterized by the initial wavenumbers are obtained by integrating

(2.13) over planes perpendicular to k1, and then dividing by the total deformation

(like in (2.21)). The terms are then multiplied by k0
1 to study the evolution of the
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compensated spectra (the insets in figure 2.9). It is important to determine what

causes the rightward shift in the peak of k0
1E

0
11(k0

1) at high Reynolds numbers, and

what causes the general disagreement between the RDT and DNS spectra at high

wavenumbers in all simulations. In figure 2.10 the balance terms are shown at different

times and different Reynolds numbers. As expected for axisymmetric contraction, the

production term is negative for the spectrum of u1, but positive for the spectrum of

u2. The rapid pressure-strain counteracts the generation of anisotropy by taking the

opposite sign of the production term, but a net tendency for anisotropy still persists.

The nonlinear term is negative for low k0
1 and positive for high k0

1, indicating that there

is a forward cascade of energy to high k0
1. This forward cascade opposes the tendency

for energy to pile up near the k0
1 = 0 plane during straining (see figure 2.8). The

overall magnitude of the nonlinear transfer term is greater for k0
1E

0
22(k0

1) compared to

k0
1E

0
11(k0

1), which is likely due to the fact that 〈u2
2〉 is amplified during the straining,

while 〈u2
1〉 is suppressed.

In the simulations, the magnitude of the strain reaches a maximum and then

decreases. To see how this is reflected in the spectral budgets, results are presented

for Run 8 at two deformations in the bottom two rows of figure 2.10. The production

and rapid pressure-strain terms (which depend on the mean strain rate) in the bottom

row are smaller than those in the middle row. As the production terms weaken,

the relative importance of the nonlinear terms (especially at intermediate and high

wavenumbers) increases. This is also the case for the slow pressure-strain term, which

peaks at intermediate wavenumbers close to the peak observed for k0
1E

0
11(k0

1). It may

be concluded, therefore, that the slow pressure strain, which is neglected in RDT

theory, is the main contributor to rightward shift in k0
1E

0
11(k0

1) both in the DNS and

the experiments of AW. The increasing importance of slow pressure strain at later

times noted here is also consistent with a similar feature in figure 2.6 addressed in

§2.3.1. On the other hand, the slow pressure-strain term is not as important to the
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Figure 2.11: Relaxation of (a) Reynolds stresses normalized by q2
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ponents of the anisotropy tensor, and (c) anisotropy tensor invariants for Runs 4 (
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figure, respectively. Lower curves for 〈u2
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b , b11, and ξ in each figure, respectively.
Dashed lines at 0 in (b) and (c) denote values for isotropic turbulence.

evolution of k0
1E

0
22(k0

1), which (besides production) is heavily influenced by nonlinear

transfer at intermediate and high wavenumbers.

2.4 Relaxation of axisymmetric turbulence

The results in §2.3 show that application of strain causes anisotropy at both the large

and small scales. This section focuses on the relaxation that occurs when the mean

strain is removed and the turbulence decays. Varying degrees of return to isotropy as

seen in single-point moments and axisymmetric and 1-D spectra are examined. The

effects of nonlinear transfer and slow pressure fluctuations are also investigated.

Figure 2.11 shows the component energy ratios and Reynolds stress anisotropy

tensor information as functions of time since the end of strain, normalized by the

time scale τ = 2K/〈ε〉 at post-strain conditions. It is clear that anisotropy decreases

significantly in the earlier stages of relaxation, slightly more rapidly if the Reynolds

number is higher (Runs 6 and 8). However, the data also strongly suggests that the

large scales will either not return to isotropy fully or will take almost an indefinitely
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long time to do so. This is consistent with the DNS of Davidson et al. (2012) and

large-eddy simulations of Chasnov (1995), which both showed persistent anisotropy

at the large scales for axisymmetric Saffman turbulence (E(k) ∼ k2 as k → 0).

This consistency in trend is perhaps not surprising, since the pre-simulation initial

conditions are also of the Saffman type (due to the choice p0 = 2 in (2.24)). Long-time

effects have also been checked by extending Runs 1 and 5 to relaxation times several

times longer than shown in the figure. As the integral length scales grow during the

extended relaxation period, the axisymmetry property ξ = −η does not hold as well

for the smaller domain (Run 1), but a finite level of anisotropy is likely to persist

even at asymptotically large times.

The concept of local isotropy in turbulence suggests the small scales may become

isotropic during relaxation. Figure 2.12 shows the mean-square vorticity components

and several ratios of derivative covariances during relaxation for Runs 4 and 8. Since

these are small-scale quantities time is normalized by the (post-contraction) Kol-

mogorov time scale. In frame (a), 〈ω2
1〉 initially decreases rapidly, while 〈ω2

2〉 and
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symbols): and for statistics of ∂u1/∂x1, and and for statistics of ∂u3/∂x3.

〈ω2
3〉 increase before decreasing. By about 20 τη, which for Run 8 corresponds to

t/τb ≈ 0.22, the mean-square vorticities are almost equal (while the Reynolds stresses

in figure 2.11 are still very anisotropic). In frame (b), velocity derivative variance

and covariance ratios also return to their isotropic value of 2. Similar to AW (their

figure 24), the ratio 〈u2
2,1〉/〈u2

1,1〉 initially undershoots, and then increases toward the

isotropic value.

For higher-order moments, figure 2.13 shows the post-contraction evolution of

skewness and flatness factors of the longitudinal velocity gradients. The general

trend is towards a skewness in the neighborhood of -0.5, which is typical of isotropic

turbulence, and a flatness factor higher than 3 showing a noticeable increase with

the Reynolds number. For Run 4 the skewness and flatness factors show a transient

overshoot, which then gives way to the trend noted above. It is also interesting

that, as a measure of isotropy, the flatness factors of ∂u1/∂x1 and ∂u3/∂x3 become

nearly equal faster than the corresponding skewness factors. The relatively slow

equilibration of the skewness factors could be due to their connection with the energy

cascade, which also depends on the large scales.

The fact that the large scales and the small scales return to isotropy (at least par-
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Figure 2.14: Relaxation of axisymmetric energy spectrum for (top row) Run 4 and
(bottom row) Run 8 at (left column) t/τb = 0.05, (center column) t/τb = 0.1, and
(right column) t/τb = 0.2. Contour levels decrease by a factor of 10. Spectra plotted
against post-contraction wavenumbers, and multiplied by two to recover K when
integrating over kr and non-negative k1. Simulation cutoff wavenumbers marked by
outermost black boundary. Spectra normalized by sinφ = kr/k to obtain circular
contours in isotropic turbulence; data for kr = 0 not plotted.

tially) at different rates in time suggest that, at a given time in the relaxation phase,

the spectra may display a series of non-trivial shapes. Figure 2.14 presents the post-

contraction evolution of the axisymmetric energy spectrum for Runs 4 and 8 (top and

bottom rows, respectively), at three relatively early time instants corresponding to

t/τb = 0.05 (left column), t/τb = 0.1 (middle column), and t/τb = 0.2 (right column).

While the axisymmetric spectra immediately following the contraction are highly

anisotropic (right column in figure 2.8), a trend towards a more isotropic appearance

(circular contours in the (k1, kr) plane) is evident at high wavenumbers during relax-
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ation. This relaxation occurs faster for Run 8 because it has a greater contrast in

time scales between the large scales and the small scales. Because the energy spec-

trum evolves only according to dissipation and energy redistribution (through the

nonlinear term), the increase in the axisymmetric energy spectrum at high k1 implies

that there is a strong energy transfer to higher k1 during the initial relaxation period.

Consistent with large-scale statistics in figure 2.11, anisotropy persists at low k1 and

low kr during relaxation.

The strong energy transfer to higher wavenumbers in the extensional direction is

expected to have a significant effect on both longitudinal and transverse 1-D spectra,

which are shown in figure 2.15 for DNS Runs 4 and 8 (top and middle rows, respec-

tively) at different times (increasing in the directions of the arrows) during relaxation.

To facilitate comparison with experiment, data from figure 19 of AW is included (with

permission) in the bottom row. The longitudinal spectrum E11(k1) initially increases

during relaxation (primarily at high wavenumbers), corresponding to an increase of

both 〈u2
1〉 (see figure 2.11(a)) and 〈(∂u1/∂x1)2〉 during the early relaxation period. In

contrast, the transverse spectrum E22(k1) shows a decrease at low wavenumbers ac-

companied by an increase at high wavenumbers, corresponding to a reduction of 〈u2
2〉

and 〈u2
3〉 even though mean-square transverse velocity gradients increase. At high

Reynolds numbers the compensated spectrum k1E22(k1) in the inset of frame (d) de-

velops a “double-peak” structure, which was a major finding in the AW experiments

(frame (f)). The evolution of this part of the spectrum is non-monotonic in time, with

the feature being most prominent in at t/τb = 0.2 (frame (d) dark blue). As noted

by AW, this “double-peak” structure during relaxation appears to be a distinctive

result of high Reynolds number. The observations here confirm that the simulations

are successfully reproducing key flow physics in the experiments. The physical mech-

anisms contributing to this double-peak can be elucidated by analyzing the spectral

energy budget, as below.
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Figure 2.15: Relaxation of (left column) longitudinal and (right column) transverse
1-D spectra, for (top row) DNS Run 4, (middle row) DNS Run 8, and (bottom row)
high Reynolds number AW experiment. Experimental data are reproduced from
figure 19 of AW by permission of the authors. Insets multiply spectra by k1. Time
(for the DNS) or downstream evolution (for the experiments) increasing in directions
of arrows. For DNS, curves at t/τb = 0 (black), t/τb = 0.1 (red, not in (c) log-log plot
for clarity), t/τb = 0.2 (blue), t/τb = 0.4 (green), t/τb = 0.6 (light blue, not in top
row for clarity), and t/τb = 0.8 (magenta, not in (a) for clarity). For DNS, E22(k1)
and E33(k1) averaged with each other for frames (b) and (d) due to axisymmetry.
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Figure 2.16: Terms from (2.13) contributing to the evolution of 1-D compensated
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As done in figure 2.10 for turbulence during the application of strain, figure 2.16

presents the balance of terms that govern the evolution of the 1-D compensated spec-

tra early in the relaxation period (t/τb = 0.05) for Runs 4 and 8. For both runs, the

evolution of k1E11(k1) (in frames (a) and (c)) is dominated by the slow pressure-strain

term (circles in green), which is positive over a wide range of wavenumbers. The inte-

gral of the pressure-strain term gives the pressure-strain correlation, which promotes

isotropy by increasing 〈u2
1〉 while decreasing 〈u2

2〉 and 〈u2
3〉. For both k1E11(k1) and

k1E22(k1), the nonlinear term (squares in blue) shows the characteristics of a forward

cascade in k1, being negative at low k1, but positive at high k1. This forward cascade

from low k1 to high k1 during relaxation is likely a consequence of a prior accumula-

tion of energy near the k1 = 0 plane during the contraction (see figure 2.8 frames (c)
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and (f), and discussion for figure 2.14). A comparison between the left and right

columns of this figure shows that the nonlinear term plays a more important role in

the evolution of k1E22(k1) than for k1E11(k1). At intermediate and high wavenum-

bers, the nonlinear transfer is strong enough to exceed dissipation and pressure-strain

combined, leading to an increase in k1E22(k1) during the early phase of relaxation.

A comparison of frames (b) and (d) also indicates that as the Reynolds number

increases, nonlinear spectral transfer becomes stronger, while the effects of viscous

dissipation are shifted towards higher wavenumbers. Since (in frame (d)) nonlinear

transfer is the term of largest overall magnitude, it is a principal contributor to the

change in shape of the transverse spectrum observed in both the AW experiments

and the numerical simulations.

While results on the balance terms for the compensated spectra in figure 2.16

explain the reduction in k1E22(k1) at low wavenumbers and the increase in k1E22(k1)

at high wavenumbers, the occurrence of a double-peak structure in k1E22(k1) at higher

Reynolds number is more subtle. It may be noted that a higher Reynolds number

gives a wider range of scales, and that results in figure 2.14 show that at higher

Reynolds number (frames in the bottom row) the high k1 region of the axisymmetric

energy spectrum increased quickly. A similar feature is seen in the transverse 1-D

spectrum (figure 2.15(d)), which exhibited a rapid increase at high wavenumbers early

in the relaxation period. This is in contrast with a slower increase of the spectrum

at high wavenumbers for the lower Reynolds number case shown in figure 2.15(b). In

other words, the double-peak structure can be interpreted as the result of a slower

decrease of E22(k1) at low k1 combined with a faster increase at high k1, provided

the contrast in time scales between these two processes is sufficiently strong, thus

requiring high Reynolds number.

The formation of two peaks in k1E22(k1) also depends on what processes influ-

ence the wavenumbers between the two peaks. For Run 8 this wavenumber range is
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Figure 2.17: Post-contraction spectral isotropy for Run 8. In (a), isotropy of 1-D
component spectra measured with (2.33) at (time increasing in the directions of the
arrows) t/τb = 0 (red, steepest curve), t/τb = 0.05 (green, intermediate curve), and
t/τb = 0.2 (blue, plateau at 1 present); dashed line at 1 for isotropic turbulence. In
(b), measured (dashed blue) 3-D energy spectrum compared with calculated spectrum
using (2.34) (solid red) at t/τb = 0.2.

approximately 2 . k1 . 10. If a forward cascade of energy occurs in k1, the curve

T22(k1) should undergo a change in sign, which is evident in figure 2.16(d) at k1 ≈ 5

(although the figure plots k1T22(k1)). The wavenumber location of this change in sign

is nearly fixed during the relaxation period, and is located between the two peaks

that emerge in k1E22(k1). In this wavenumber range as the nonlinear term is close to

zero, the pressure-strain and dissipation terms become more important. Hence, while

the strong decrease in the spectrum at low wavenumbers and the rapid increase in the

spectrum at high wavenumbers are primarily results of strong nonlinear interactions,

the formation of two clearly visible peaks in k1E22(k1) depends subtly on pressure-

strain and dissipation effects in the wavenumber region between the two peaks. This

effect is likely to become more prominent at higher Reynolds numbers which will

support an even wider range scales.

As suggested throughout this section, the small scales become isotropic during

relaxation, while the large scales appear to retain a significant degree of anisotropy

for a very long time. The scale-dependent degree of return to isotropy was first ob-
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served for the axisymmetric energy spectrum in figure 2.14, where contours of kinetic

energy at high wavenumbers became nearly circular for the higher Reynolds number

simulation. To assess the scale-dependent anisotropy quantitatively, comparisons can

be made with theoretical relations for spectra in isotropic turbulence, such as

E22(k1) = (1/2)[E11(k1)− k1dE11(k1)/dk1] , (2.33)

E(k) = −k d [E11(k)/2 + E22(k)] /dk . (2.34)

It is convenient (Jiménez et al., 1993; Yeung & Zhou, 1997) to form the ratio of the

right- to left-hand side of (2.33), and to compare the actual 3-D spectrum with a

result calculated from the 1-D spectra using (2.34). The derivatives in (2.33) and

(2.34) are obtained using a simple central difference scheme, although some noise

from numerical differentiation is inevitable. Figure 2.17 presents the spectral isotropy

results for Run 8 focusing on the early relaxation period. In frame (a), the isotropy

coefficient formed from (2.33) is shown at three times (increasing in the directions of

the arrows) during relaxation corresponding to t/τb = 0, t/τb = 0.05, and t/τb = 0.2.

The 1-D spectra are initially very anisotropic (steep red curve), as indicated by the

lack of a plateau at 1 for the isotropy coefficient. By t/τb = 0.2 into the relaxation

period, the isotropy coefficient forms a plateau of height close to 1 over a wide range of

wavenumbers, suggesting that the 1-D spectra are becoming isotropic at intermediate

and high wavenumbers. In frame (b), the energy spectrum calculated using (2.34)

agrees well with the measured energy spectrum for k & 30 as early as t/τb = 0.2 into

the relaxation period. The anisotropy at low wavenumbers seen in both frames shows

that the large scales return to isotropy more slowly, as expected.
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2.5 Summary

This chapter presents a numerical investigation of isotropic turbulence subjected to

irrotational axisymmetric contraction and subsequent relaxation. A series of direct

numerical simulations with grid resolution up to 40963 have been conducted. Spe-

cial care was taken to mimic the flow physics in the wind tunnel experiments of

Ayyalasomayajula & Warhaft (2006), which used an axisymmetric contraction with

a 4:1 area ratio. The development of anisotropy and the physical mechanisms behind

scale-dependent anisotropy during the contraction and subsequent relaxation are of

fundamental interest.

Although homogeneous turbulence subjected to spatially uniform mean velocity

gradients can be simulated in a solution domain moving with the mean flow, time-

dependent mean strain rates are necessary to produce flow conditions corresponding to

experiments in spatially-evolving wind tunnels. Accordingly, a technique is developed

to specify a time-dependent strain rate based on the convective time for fluid traveling

along the wind tunnel centerline. The resulting strain rates in the DNS are, in non-

dimensional form, similar to the strain rate histories in the AW experiments. Before

applying the strain, a pre-simulation is first carried out with a specified initial energy

spectrum to obtain physically realistic conditions of unforced isotropic turbulence.

The Reynolds numbers simulated in this work are limited by constraints on large-scale

sampling and small-scale resolution, which are compounded by the non-cubic aspect

ratio of the solution domains. A domain sufficiently large along its shortest dimension

compared to the integral length scales is required to ensure that the numerical solution

remains statistically axisymmetric at all times.

As expected, axisymmetric contraction leads to anisotropy in the Reynolds stress

tensor. Velocity fluctuations are suppressed in the extensional direction but am-

plified in the compressive directions. The degree of anisotropy is independent of
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Reynolds number but is a function of the total strain applied. The small scales also

become anisotropic. Mean-square vorticity in the extensional direction is enhanced

(figure 2.7), and changes are observed in the skewness of the longitudinal velocity gra-

dients. Rapid distortion theory (RDT) predicts anisotropy at the large scales well but

not at the small scales, which implies that nonlinear effects excluded in RDT play an

important role. The axisymmetry about the x1 direction motivates the use of spectra

extracted as functions of k1 and the wavenumber magnitude in the transverse plane

kr =
√
k2

2 + k2
3. The axisymmetric energy spectrum becomes anisotropic at all scales

of motion during the application of strain, and shows that energy is accumulated in

long-wavelength (low k1) modes in the x1 direction (figure 2.8). The effect of strain

on the longitudinal 1-D spectrum of u1 fluctuations is a decrease at low wavenumbers

but an increase at high wavenumbers (figure 2.9). At high Reynolds number the

compensated form of this spectrum shows a rightward shift to higher wavenumbers

as a consequence of the nonlinear effects of slow pressure-strain.

Following the removal of the mean strain, the small scales relax faster than the

large scales. The contrast in relaxation timescales becomes more apparent as the

range of timescales in the flow increases with increasing Reynolds number. Statis-

tics of velocity gradients show a return to local isotropy, whereas a residual level

of anisotropy in the Reynolds stresses appears to persist indefinitely. The axisym-

metric energy spectrum at high Reynolds number quickly becomes isotropic at high

wavenumbers (small scales), whereas at low Reynolds number the spectrum is slow in

its return to isotropy (figure 2.14). In close correspondence with the AW experiments,

the compensated transverse spectrum k1E22(k1) undergoes a qualitative change at

higher Reynolds number, where a “double-peak” structure emerges at intermediate

times during relaxation (figure 2.15(d)). Analyses of the spectral budget following

the contraction (figure 2.16) indicate that the transverse 1-D spectrum is dominated

by nonlinear energy transfer to high k1 wavenumbers, and that slow pressure-strain
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and viscous dissipation also play a role in establishing the double-peak structure

in k1E22(k1). The formation of the double-peak structure requires that the high

wavenumbers (small scales) relax very quickly compared to the low wavenumbers

(large scales), and thus requires a high Reynolds number and a wide range of scales.

In summary, the motivation for this chapter was to see whether DNS could repro-

duce the experimental finding by AW that turbulence under axisymmetric contraction

and subsequent relaxation undergoes a qualitative change as the Reynolds number

is increased. Through a series of computations using a time-dependent strain rate

formulated to mimic the AW wind tunnel, numerical simulations are successful in

reproducing and helping to explain the experimental observations. The behavior of

turbulence under irrotational, axisymmetric straining is a canonical problem (Lum-

ley & Newman, 1977) for which there is a continuing need for data at high Reynolds

number (Warhaft, 2009). The results of this study have implications for engineering

devices such as nozzles and diffusers where high Reynolds number turbulent flows

are typically subjected to axisymmetric contraction, relaxation, or expansion. The

mixing of passive scalars, especially small temperature fluctuations, in these flows

(Gylfason & Warhaft, 2009) is also a subject of both theoretical significance and

practical interest, and is studied in the next chapter.
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CHAPTER III

TURBULENT MIXING UNDER AXISYMMETRIC CONTRACTION

The turbulent mixing of a passive scalar is a fundamental problem that is relevant to

many engineering applications occurring in many different flow geometries and un-

der a wide range of flow conditions. While many experimental (Warhaft, 2000) and

computational (Gotoh & Yeung, 2013) studies of passive scalar mixing are known,

they are often set in shear flows or isotropic turbulence, and much less is known

for the canonical configuration of turbulent mixing under axisymmetric contraction

(Warhaft, 1980; Gylfason & Warhaft, 2009). As seen in Chapter II, axisymmetric

contraction can have a profound impact on the velocity field. When the strain rate

is sufficiently large, anisotropy develops at all scales of motion, and during the sub-

sequent relaxation the flow is dominated by strong nonlinear interactions at higher

Reynolds numbers. This chapter continues to investigate the effects of axisymmetric

contraction by introducing passive scalars in the flow and studying their evolution.

The efforts focus on achieving similar conditions to the experiments of Gylfason &

Warhaft (2009) (GW henceforth) and providing further validation for some of the

relations derived in their work.
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Figure 3.1: Two-dimensional illustration of the Gylfason & Warhaft (2009) ex-
periment in which grid-generated isotropic turbulence generates scalar fluctuations
through interactions with a mean scalar gradient before passing through a 4:1 area-
ratio axisymmetric contraction.
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It is instructive to review the experimental configuration of GW, sketched in fig-

ure 3.1, as the numerical simulations will follow it closely. Aside from the addition of

axisymmetric contraction, the procedure to generate scalar fluctuations depicted in

figure 3.1 is one that is widely used in the experimental community (Warhaft, 2000).

Beginning upstream of the turbulence generating device, a mean thermal gradient is

introduced into the flow. The mean flow then passes through a turbulence genera-

tor, e.g., a passive or active grid, which generates nearly-isotropic turbulent velocity

fluctuations. Turbulent advection of the mean scalar field then produces scalar fluc-

tuations, while the isotropy of the velocity fluctuations ensures that the mean scalar

field remains intact (Corrsin, 1952). At this point, one may measure the evolution of

scalar fluctuations in decaying isotropic turbulence, but GW proceeded to pass the

flow through an axisymmetric contraction, which promotes anisotropy in the veloc-

ity field (see Chapter II) and the scalar field. When the strain rate is high enough,

rapid distortion theory (RDT) can be used to predict the evolution of the velocity

and scalar fields. The contraction also distorts the mean scalar gradient according to

the geometry of the wind tunnel. For the case of transverse mean gradients, the con-

traction increases the magnitude of the gradient, and for streamwise mean gradients,

which are very rarely studied (Budwig et al., 1985), the mean gradient decreases. It

is important that the numerical formulation for DNS of such flows properly takes into

account the effect of the mean deformation on the mean scalar gradients, since they

explicitly enter the equations used during the computations. This is unlike the equa-

tions for the velocity fluctuations, where mean velocity gradients do not explicitly

appear following a transformation of variables (Rogallo, 1981).

The rest of this chapter is organized as follows. In §3.1, the mathematical formula-

tion for passive scalars under irrotational mean strain is presented, and the important

RDT results for rapid strain rates are summarized. In §3.2, the initial conditions for

the strained simulations are described, the generation of which involves conduct-
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ing a pre-simulation to develop scalar fluctuations under the presence of a uniform

mean gradient. Because of an interest in comparing with GW, the simulations use a

Schmidt number (or Prandtl number) of 0.7, which is similar to the Prandtl number

for temperature fluctuations in air. Continuing, in §3.3 axisymmetric contraction of

the form described in Chapter II is applied to study how scalar statistics, e.g., the

scalar spectrum and scalar gradient statistics, evolve as the flow becomes anisotropic.

In §3.4, the strain is removed, and the turbulence is allowed to relax back toward a

more isotropic state. Finally, §3.5 summarizes the major results from this chapter.

3.1 Mathematical formulation and numerical approach

This section presents the mathematical formulation used for the computations of

turbulent mixing under axisymmetric contraction, as well as some of the theoretical

results for when the strain rate is very rapid. While the addition of passive scalars

requires only straightforward extensions of Rogallo’s method (for the computations)

or rapid distortion concepts (for the theoretical results), the details are presented here

since studies of turbulent mixing under axisymmetric contraction are scarce.

3.1.1 Governing equations in a deforming, anisotropic domain

The evolution of a passive scalar is governed by an advection-diffusion equation, where

the instantaneous value (mean plus fluctuation) of the scalar Θ satisfies

∂Θ

∂t
+ Uj

∂Θ

∂xj
= D

∂2Θ

∂xj∂xj
, (3.1)

where Uj is the instantaneous velocity and D is the molecular diffusivity. The instan-

taneous velocity and scalar fields are decomposed into their mean and fluctuating

components as

Ui = 〈Ui〉+ ui , Θ = 〈Θ〉+ θ , (3.2)
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where 〈Ui〉 is the mean velocity, 〈Θ〉 is the mean of the scalar, ui is the fluctuating

velocity, and θ is the scalar fluctuation. In homogeneous turbulence the mean fields

〈Ui〉 and 〈Θ〉 have spatially uniform (but possibly time-dependent) gradients, and can

thus be expressed as

〈Ui〉 =
∂〈Ui〉
∂xj

xj , 〈Θ〉 =
∂〈Θ〉
∂xj

xj . (3.3)

Equation (3.1) can be expanded in terms of the mean and fluctuation as

∂〈Θ〉
∂t

+
∂θ

∂t
+ 〈Uj〉

∂〈Θ〉
∂xj

+ 〈Uj〉
∂θ

∂xj
+uj

∂〈Θ〉
∂xj

+uj
∂θ

∂xj
= D

∂2〈Θ〉
∂xj∂xj

+D
∂2θ

∂xj∂xj
, (3.4)

and after taking the mean of (3.4), for homogeneous turbulence the mean satisfies

∂

∂t

[
∂〈Θ〉
∂xj

]
+
∂〈Uk〉
∂xj

∂〈Θ〉
∂xk

= 0 . (3.5)

Denoting the time-dependent mean scalar gradient by 〈Θi(t)〉 ≡ ∂〈Θ〉/∂xi, (3.5) can

be written as

d〈Θi〉
dt

+ 〈Θk〉
∂〈Uk〉
∂xi

= 0 , (3.6)

which is similar to equation (2.11) in GW. Given the initial mean scalar gradient

〈Θi〉0, (3.6) can be integrated in time to update the mean scalar gradient under the

application of mean strain. For irrotational mean strain the mean gradient satisfies

〈Θα(t)〉 = 〈Θα〉0 exp

[
−
∫ t

0

∂〈Uα〉
∂xα

dτ

]
, (3.7)

which is exactly like (2.5) for the metric tensor shown in Chapter II. Hence, during

the simulation the deformation of the computational domain (expressed through the
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grid metrics) can be readily used to update the mean scalar gradients by

〈Θα(t)〉
〈Θα〉0

=
Bαα(t)

B0
αα

. (3.8)

This result is perhaps geometrically intuitive, since the stretching (squeezing) of the

computational domain in a given coordinate direction should act to decrease (increase)

the mean scalar gradient in that direction.

With the mean scalar field given as a prescribed function of the mean strain

(i.e., domain deformation), the equation for the scalar fluctuations must be derived.

Subtracting the equation for the scalar mean from (3.4), the scalar fluctuations satisfy

∂θ

∂t
+ 〈Uj〉

∂θ

∂xj
+ uj〈Θj〉+ uj

∂θ

∂xj
= D

∂2θ

∂xj∂xj
. (3.9)

The challenge in (3.9) is the inclusion of the non-periodic mean flow advection term

(second from left), which (if retained) precludes one from using Fourier pseudo-

spectral methods for the scalar fluctuations. In similar fashion as for the velocity

field, this complication is removed by switching to the deforming coordinate system

introduced by Rogallo (1981), which relates the computational coordinates ξi with

the laboratory coordinates xi via ξi = Bij(t)xj, where Bij(t) is the time-dependent

metric tensor. In the transformed coordinates the scalar fluctuations satisfy

∂θ

∂t
+ uj〈Θj〉+ ujBkj

∂θ

∂ξk
= DBkjBlj

∂2θ

∂ξk∂ξl
. (3.10)

The velocity and scalar fluctuations can now be written as Fourier series in the trans-

formed coordinates as

ui(ξ) =
∑
κ

ûi(κ) exp(iκ · ξ) , θ(ξ) =
∑
κ

θ̂(κ) exp(iκ · ξ) , (3.11)
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which transforms (3.10) to

dθ̂

dt
+DBkjBljκkκlθ̂ = ĉ− ûj〈Θj〉 , (3.12)

where ĉ represents the contribution from the nonlinear terms. Molecular diffusion is

then integrated exactly by defining the integrating factor

F (t) = exp

(∫ t

tn

DBkj(τ)Blj(τ)κkκl dτ

)
, (3.13)

where tn represents the current time level in the computation, so that (3.12) can be

written as

dF θ̂

dt
= F · (ĉ− ûj〈Θj〉) . (3.14)

Note that when using Rogallo’s method it is not the velocities ûj which are computed,

but rather the transformed velocities û∗α ≡ ûα/Bαα, which is used to finalize (3.14) as

dF θ̂

dt
= F · (ĉ− 〈Θ1〉B11û

∗
1 − 〈Θ2〉B22û

∗
2 − 〈Θ3〉B33û

∗
3) . (3.15)

During the computations nonlinear terms are formed by calculating scalar gradients

in Fourier space, and multiplying them with the velocity field in physical space. The

same dealiasing strategies described in Chapter II are used for the current simulations.

3.1.2 Rapid distortion theory for the scalar field

One useful theory in turbulence research is the so-called rapid distortion theory

(RDT), which describes the evolution of a turbulent flow subjected to very rapid

mean strain rates (Batchelor & Proudman, 1954). The assumption in RDT is that

when the mean strain rates are very large, the nonlinear (e.g., turbulent advection)

and diffusive terms in the governing equations will not appreciably change the flow

during the distortion (which occurs instantaneously when the strain rates are infi-
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nite). Such terms are dropped from the governing equations, leaving equations which

admit exact solutions. The RDT for the velocity field (Townsend, 1976) was used in

Chapter II as a basis for comparison with the DNS results (e.g., see figure 2.9). While

RDT for the velocity field is somewhat complex because incompressibility must be

enforced by the rapid pressure at all times, as GW point out, RDT as applied to

passive scalars is very straightforward.

Beginning directly with the equation for the Fourier coefficients of the scalar

fluctuations in the deforming coordinate system given by (3.12), rapid distortion

assumptions are used to drop diffusion and turbulent advection terms (the second

and third terms, respectively). In this work, only small, finite deformations are

considered (e.g., an extension by a factor of 4 in the x1 direction), so the mean

scalar gradients only change by modest factors according to (3.8), and never become

“rapid” themselves. Hence, the mean-gradient source terms appearing in (3.12) can

be dropped, giving the result that the Fourier coefficients of the scalar field remain

unchanged, even though their corresponding wavenumbers are distorted by the mean

deformation. As summarized by GW, if one considers the spectral covariance of

the passive scalar Eθ(k) = 〈θ̂∗(k)θ̂(k)〉, its value (shape) at any point during the

deformation can be determined from the pre-strain spectrum by

Eθ(t,k) = Eθ(0,k
0) , (3.16)

where k0 is the corresponding initial (pre-strain) wavenumber for the wavenumber k.

Of particular interest in scalar mixing studies are scalar gradient variances, which

directly enter the expression for the mean scalar dissipation rate, given by

〈χ〉 ≡ 2D

〈
∂θ

∂xi

∂θ

∂xi

〉
. (3.17)

Given the previous discussion that the scalar field is only distorted by the mean
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strain (i.e., there are no production or dissipation mechanisms changing the scalar

field during rapid straining), it perhaps comes to no surprise that the scalar gradient

variances can be related to their initial values. Although it can be derived through

(3.16), it suffices to simply state the GW result that for a coordinate direction xα

which undergoes a total strain exp[fα(t)] (see (2.6) and surrounding discussion), the

scalar gradient variance in that direction changes according to

〈
∂θ

∂xα

∂θ

∂xα

〉
= e−2fα(t)

〈
∂θ

∂xα

∂θ

∂xα

〉
t=0

. (3.18)

Hence, in directions of extensional strain (fα(t) > 0) the scalar gradients weaken, and

in directions of compressive strain (fα(t) < 0) the scalar gradients are amplified.

3.2 Pre-simulation and the development of the scalar fluctuations

For the passive scalar simulations, the interest is in studying the effects of multiple

strain rate profiles on a single pre-strain initial condition, so as to better understand

when the demanding assumptions of RDT become valid for the passive scalar. This

contrasts the approach used in Chapter II for the velocity field in which a single non-

dimensional mean strain rate profile was used for multiple pre-strain initial conditions

(i.e., Reynolds numbers). The initial conditions for the strained simulations are once

again generated by conducting a pre-simulation, where the velocity field is treated

in the same manner as described in Chapter II. The numerical configuration for the

current pre-simulation is the same as Run 7 described in table 2.1, but is augmented

with three passive scalars of Sc = 0.7 with mean gradients in different coordinate

directions, i.e., 〈Θi〉0 = (1, 0, 0), 〈Θi〉0 = (0, 1, 0), and 〈Θi〉0 = (0, 0, 1) for the first,

second, and third scalar, respectively. The scalar fluctuations begin from zero initial

conditions, and with the axisymmetric contraction being oriented in the x1 direction,

the second and third scalars are expected to remain statistically similar throughout
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Figure 3.2: Pre-simulation evolution of (a) scalar variance and its budget terms,
(b) scalar production rate and mean scalar dissipation rate, and (c) scalar variance.
Curves and symbols in black for scalar with mean gradient in x1, in red for scalar with
mean gradient in x2, and blue for scalar with mean gradient in x3. Sloped dashed lines
in (a) adjacent to scalar variance and mean scalar dissipation rate are proportional
to t2, and dashed line adjacent to scalar production rate proportional to t. Vertical
dotted line indicates point at which strain is applied in the strained simulations.

all phases of the simulation, and to show significantly different behavior than the first

scalar only after the strain is activated.

Before the mean strain can be applied, the velocity and scalar fields must be al-

lowed to develop and attain characteristics of physical turbulence. In Chapter II for

the velocity field, this was accomplished by monitoring small-scale statistics such as

the velocity gradient skewness, and comparing them with well-known values in the

literature. Because the velocity field during the pre-simulation is similar to Run 7 in

Chapter II, velocity field statistics are not presented again. The scalar fluctuations,

unlike the velocity fluctuations, begin with zero initial conditions and develop nat-

urally through the interaction of the turbulent velocity fluctuations with the mean

scalar gradients. Figure 3.2 presents some quantities related to the development of

the scalar variance, which in homogeneous turbulence is governed by the equation

d〈θ2〉
dt

= −2〈uiθ〉
∂〈Θ〉
∂xi

− 〈χ〉 , (3.19)
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where the first term on the right-hand side is the production term (P ), and the second

is the mean scalar dissipation rate (〈χ〉), previously defined in (3.17). The results for

all scalars are very similar due the isotropy of the initial velocity field, and the equal

magnitudes of the various mean scalar gradients. When beginning from zero initial

conditions, at small times the scalar fluctuations grow in linearly proportion to the

simulation time, giving the expected result in frame (a) that the scalar variance and

dissipation grow quadratically in time, while the scalar production rate grows linearly

in time. Remarkably, in the presence of a uniform mean scalar gradient, the scalar

variance is expected to increase monotonically. This was first predicted by Corrsin

(1952) for stationary isotropic turbulence, and was later found to be true in decaying

turbulence as well (Sullivan, 1976; Sirivat & Warhaft, 1983; Gibson & Dakos, 1993).

In frame (b) after the initial development period, it is seen that production continues

to exceed dissipation, resulting in the quasi-linear growth for the scalar variance as

a function of time in frame (c). Linear growth was predicted and demonstrated by

Sullivan (1976), and was also found in the experiments of Sirivat & Warhaft (1983)

(albeit as functions of space, with uniform mean velocities).

To better determine if the scalar field is entering a fully-developed state, it is useful

to examine non-dimensional quantities characterizing the large and small scales of

the scalar fields. Beginning in figure 3.3, in frame (a) the velocity-scalar correlation

coefficient, which is related to the production mechanism, approaches a value near

−0.7, which is in very good agreement with past experiments (Sirivat & Warhaft,

1983; Budwig et al., 1985). The ratio of scalar variance production to dissipation in

frame (b) appears to asymptote to a value near 1.8, which is also in the range of

values reported by experiments (Sirivat & Warhaft, 1983; Gibson & Dakos, 1993).

Finally, the mechanical-to-scalar timescale ratio shown in frame (c) has also passed

through initial transients, approaching a value greater than 2, which is in reasonable

agreement with the pre-contraction values reported by GW. The development of the
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Figure 3.3: Pre-simulation evolution of (a) velocity-scalar correlation coefficient, (b)
ratio of scalar production rate to scalar dissipation rate, and (c) mechanical-to-scalar
timescale ratio. Black curves with open squares ( ) for scalar with mean gradient
in x1, red curves with open circles ( ) for scalar with mean gradient in x2, and blue
curves with open triangles ( ) for scalar with mean gradient in x3. Vertical dotted
line indicates point at which strain is applied in the strained simulations.

small-scales of the scalar field is examined with scalar gradient statistics, in particular

the scalar gradient anisotropy tensor

C ′ij =
Cij
Ckk
− 1

3
δij , (3.20)

where Cij is the fluctuating scalar gradient covariance tensor defined as

Cij =

〈
∂θ

∂xi

∂θ

∂xj

〉
. (3.21)

Figure 3.4 shows the evolution of the diagonal components of the anisotropy ten-

sor for each scalar during the pre-simulation. After an initial transient, the scalar

gradients show a small level of anisotropy, with the trend being that the scalar gra-

dient variance in the direction of the imposed mean gradient is slightly larger than

the scalar gradient variances in the other directions. This result is expected, given

similar levels of anisotropy in mean-gradient driven scalar fields of moderate Schmidt

numbers reported in previous works (Overholt & Pope, 1996; Yeung et al., 2002).
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Figure 3.4: Pre-simulation evolution of fluctuating scalar gradient anisotropy tensor
for (a) scalar with mean gradient in x1, (b) scalar with mean gradient in x2, and
(c) scalar with mean gradient in x3. Black curves with open squares ( ) for C ′11,
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The turbulence at t ≈ 0.7q2
0/〈ε〉0 is taken as the initial condition for the strained

simulations, as most of the transient behavior has passed, and the scalar fields (and

the velocity field) are entering a fully-developed state.

3.3 Application of strain

In this section the initial conditions described in §3.2 are subjected to mean strain in

the form of an axisymmetric contraction that models the GW wind tunnel. Unlike

in Chapter II where a single non-dimensional strain rate was applied to multiple

pre-strain initial conditions, here the focus is on the application of multiple non-

dimensional strain rates to a single initial condition. Such tests allow one to confirm

the validity of GW’s RDT results for the scalar spectrum and scalar gradients, and

to see what strain rates are required to satisfy the stringent assumptions of RDT.

Specifically, simulations are conducted using mean velocity profiles with peak non-

dimensional strain rates S∗0 = 25, 50, 100, and 200.

Because the velocity field is now subjected to multiple strain rates as well, the
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Figure 3.5: Evolution of (a) turbulence kinetic energy, (b) mean energy dissipa-
tion rate, and (c) non-dimensional mean strain rates during the application of mean
strain. Turbulence kinetic energy and mean energy dissipation rate normalized by
pre-contraction values. In (b), solid lines for true mean energy dissipation rate,
and dashed lines for mean energy dissipation rate evaluated with isotropic surro-
gate 〈ε〉exp = 5ν(〈u2

1,1〉 + 〈u2
2,1〉). In (c), mean strain rate normalized by large-eddy

turnover time τ (upper red curves) and Kolmogorov time scale τη (lower blue curves).
Dashed lines in right frame formed by normalizing the strongest strain rate profile
with τ and τη formed with 〈ε〉exp. In all frames, peak mean strain rate of mean velocity
profile increasing in the directions of the arrows.

evolution of the turbulence kinetic energy, mean energy dissipation rate, and non-

dimensional strain rates are briefly presented in figure 3.5. In this and the following

figures, pre-contraction quantities used for normalization are marked with a sub-

script a. Recall that in the numerical wind tunnel, the mean strain rate initially

increases very gradually, with the result being that the turbulence continues to decay

early in the straining period. In agreement with expectations and RDT (Pope, 2000),

as the strain rate increases, the amplification of the turbulence kinetic energy and

dissipation rate also increases. Because part of the effort is to better understand the

GW experiments, figure 3.5 also includes some quantities as they would be calcu-

lated with the experimental techniques. In particular, in frame (b) the mean energy

dissipation rate, given by

〈ε〉 = 2ν〈sijsij〉 , (3.22)
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is presented, which is challenging to measure experimentally because many velocity

derivative variances and covariances must be measured simultaneously. GW employ

an isotropic surrogate of the form

〈ε〉exp = 5ν

[〈(
∂u1

∂x1

)2
〉

+

〈(
∂u2

∂x1

)2
〉]

, (3.23)

which underestimates the mean energy dissipation rate because velocity gradients in

the extensional direction are severely suppressed, while gradients in the compressive

directions are amplified (see discussion near the end of §2.3.1). The errors in the

surrogate impact the assessment of the non-dimensional strength of the wind tunnel

contraction in frame (c), leading to an over prediction for the non-dimensional strain

rates. In the future, axisymmetric surrogates for the energy dissipation rate, perhaps

formed with relations derived by George & Hussein (1991) involving gradients in the

compressive directions, might improve the estimates.

Continuing, the evolution of the scalars under axisymmetric contraction is exam-

ined by plotting the mean gradients, scalar variances, and production and dissipation

rates in figure 3.6. In the figure, the top row contains results for the scalar with

mean gradient in the x1 direction, and the bottom row contains results for the scalars

with mean gradients in the transverse directions. The evolution of the mean scalar

gradients (left column) simply follows the geometry of the distortion caused by the

mean strain: the mean scalar gradient in the x1 direction in frame (a) decreases by

a factor of 4 as the domain elongates in the x1 direction, and the mean scalar gra-

dients in the transverse directions shown in frame (d) increase by a factor of 2 as

the domain contracts in the x2 and x3 directions. As discussed previously, under

rapid distortion there is no physical mechanism (production or dissipation) which

can act to appreciably change the scalar variance. This is borne out in frames (b)

and (e), which show that as the peak strain rate is increased from S∗0 = 25 to 200,
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Figure 3.6: Evolution of (left column) the magnitude of the mean scalar gradient,
(middle column) the scalar variance, and (right column) the production rate and
mean dissipation rate for each scalar. Pre-contraction values used for normalization
marked with subscript a. Top row for scalar with mean gradient in x1, and bottom
row for scalars with mean gradients in x2 (red curves) and x3 (blue curves). In right
column, dashed lines for mean scalar dissipation rate calculated with RDT. In bottom
left and middle frames, open red squares ( ) for scalar with mean gradient in x2, and
open blue circles ( ) for scalar with mean gradient in x3. Peak mean strain rate
increasing in the directions of the arrows.

the scalar variance deviates less and less from the pre-contraction value. Frames (c)

and (f) show the production and dissipation rates of the scalar variance normalized

by the initial value of the scalar dissipation rate. The overall trend for the scalar

dissipation rate to increase during the contraction is expected, given that scalar gra-

dients in the transverse directions are amplified during the contraction. (This can
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Figure 3.7: Evolution of (a) scalar flux in the direction of the mean scalar gradient
normalized by the magnitude (so as to retain the negative sign) of the initial value for
each respective scalar, (b) velocity-scalar correlation coefficient, and (c) ratio of scalar
production rate to mean scalar dissipation rate during the application of strain. Black
curves for scalar with mean gradient in x1, red curves for scalar with mean gradient
in x2, and blue curves for scalar with mean gradient in x3. Peak mean strain rate of
mean velocity profile increasing in the directions of the arrows.

also be inferred by taking the trace of (3.18) assuming rapid distortion applies and

that the initial scalar gradient variances are nominally isotropic.) Where a significant

difference emerges between the scalars is the production rate. As seen in frame (c),

for the scalar with mean gradient in x1, the production rate drops by approximately

a factor of 10, while in frame (f) the production rates for scalars with transverse

mean gradients increase by factors of roughly 3. Of course, given the form for the

production term in (3.19), any changes in the mean gradients for the scalars play an

important role in the evolution of the production rate, but the significant drop in the

production rate for the scalar with mean gradient in x1 suggests that the scalar flux

is also changing appreciably, which is examined next.

The investigation into the factors which influence the scalar variance is continued

in figure 3.7. Shown in frame (a) is the evolution of the scalar flux for each scalar,

normalized by the magnitude of the pre-contraction value. For scalars with mean

gradients in the transverse directions, the scalar flux is strengthened, which when

72



www.manaraa.com

coupled with the fact that the transverse mean scalar gradients increase during the

contraction, leads to the overall increase in the production rate observed in frame (f)

of figure 3.6. For the scalar with mean gradient in x1, the picture is quite different.

There is a significant weakening of the scalar flux, which exacerbates the effect that

the reduction in the mean scalar gradient had on the production rate. Frame (b)

of figure 3.7 shows that there is a reduction in the strength of the velocity-scalar

correlation for all scalars, with the de-correlation being most significant for the scalar

with mean gradient in x1. In frame (c) the same results as frames (c) and (f) of

figure 3.6 are presented, but now in the form of the ratio of the production rate to the

scalar dissipation rate. It appears that in the RDT limit the ratio of production to

dissipation for scalars with transverse mean gradients is not significantly altered from

the pre-contraction value. For the scalar with a streamwise mean gradient, however,

the ratio of production to dissipation drops below 1 early during the application of

strain, and reaches a minimum value near 0.1 after the full application of strain.

During the application of rapid strain, such changes in the production-to-dissipation

ratio are immaterial, because the scalar variance is held constant during straining;

however, this effect will clearly be felt in the post-contraction region of the flow.

In fact, for some finite amount of time following the contraction there will be a

significant “memory effect” in the flow, which will be the continued destruction of

the scalar variance for the scalar with mean gradient in the streamwise direction.

Figure 3.6 showed that the DNS appear to support the RDT prediction that under

very rapid straining, the scalar variance should remain constant. The scalar spectrum

is now examined to verify that its shape as a function of the pre-contraction wavenum-

bers is preserved under very rapid straining. Much like in Chapter II, the focus is on

the 1-D longitudinal spectrum because it is most readily measured in experiments,

and was reported by GW. Similar to the presentation of the 1-D component velocity

spectra, the 1-D scalar spectrum is presented as a function of the pre-contraction
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Figure 3.8: Comparison of pre- and post-contraction 1-D spectra for (a) passive scalar
with mean gradient in the x1 direction and (b) passive scalars with mean gradient
perpendicular to x1. The spectra in (b) are averaged over scalars with mean gradients
in x2 and x3. Spectra shown as functions of pre-contraction wavenumbers. Insets show
the compensated spectra of the form k0

1E
0
θ (k

0
1). Solid black lines for pre-contraction

spectra and colored lines for post-contraction spectra from runs with different strain
rate profiles: green for peak strain rate S∗ = 25, blue for S∗ = 50, red for S∗ = 100,
and cyan for S∗ = 200. Arrows drawn in the direction of increasing strain rate (black
curve excluded).

wavenumbers k0
1 as

E0
θ (k

0
1) = Eθ(k1)B11(t)/B0

11 , (3.24)

where the evolution of the time-dependent grid metric ratio B0
11/B11(t) indicates the

extent of deformation (elongation) in the x1 direction. Figure 3.8 presents the pre-

and post-contraction 1-D spectra for the scalar with mean gradient in x1 in frame (a),

and for the scalars with transverse mean gradients in frame (b). The insets include the

compensated spectra, the area under which is the scalar variance. In frame (a) it is

seen that the scalar variance is never significantly changed from the pre-contraction

value for the case of a mean gradient in x1, which is expected given the result in

frame (b) of figure 3.6. For the scalars with transverse mean gradients, in frame (b)

there is an increase in the scalar spectrum over all wavenumbers, resulting in the
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Figure 3.9: Evolution of scalar gradient anisotropy tensor during the application of
strain for (left) scalar with mean gradient in x1, (middle) scalar with mean gradient
in x2, and (right) scalar with mean gradient in x3. Black curves for C ′11, red curves for
C ′22, and blue curves for C ′33. Peak mean strain rate of mean velocity profile increasing
in the directions of the arrows. Dashed curves calculated with RDT.

increased post-contraction scalar variance shown earlier in frame (e) of figure 3.6.

In figure 3.8, the arrows are drawn in the direction of increasing strain rate, and a

robust trend is that as the strain rate is increased, the spectrum agrees more with

its pre-contraction shape, as predicted by RDT. At all strain rates, the simulations

show deviations from RDT at high wavenumbers, in agreement with the experimental

results reported by GW (see their figure 9). Such disagreement is expected, as even

at the highest strain rates considered in this study, the strain rates are not very rapid

compared to the small scales, as shown in frame (c) of figure 3.5.

Thus far single-point statistics and spectra have been examined, but not the de-

velopment of anisotropy in the scalar field. Anisotropy in the scalar field, particularly

at the small scales, can be understood by examining statistics of fluctuating scalar

gradients, the first non-zero statistics of which appear at the second-order. Figure 3.9

presents the evolution of the fluctuating scalar gradient anisotropy tensor during the

application of strain for each of the three scalars. The expectation that scalar gra-

dients in the transverse directions should be amplified, while scalar gradients in the

streamwise direction should decrease is satisfied for all scalars. It is also clear that
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the slight anisotropy in the scalar gradients before the application of strain shown

previously in figure 3.4 affects the post-contraction axisymmetry (or lack thereof) of

the scalar gradients. For the scalar with mean gradient in x1, the scalar gradients

shown in frame (a) remain axisymmetric as gradients in the transverse directions are

amplified equally. However, for the scalars with transverse mean gradients shown in

frames (b) and (c), while both transverse fluctuating scalar gradients are amplified,

their slightly anisotropic initial conditions result in a loss of axisymmetry as the strain

is applied. Figure 3.9 also includes in the form of dashed curves the predicted evolu-

tion of the scalar gradient anisotropy tensor using fluctuating scalar gradient variances

calculated according to the RDT result in (3.18). In all cases, the agreement with

RDT improves as the strain rate is increased. The evolution of the scalar gradient

anisotropy reported here is very similar to the result of GW (their figure 7), although

they assumed perfectly isotropic initial conditions for the fluctuating scalar gradients

when calculating the RDT-predicted evolution of the scalar gradient anisotropy.

3.4 Relaxation of axisymmetric turbulence

Now that strain has been applied to the turbulence to achieve a total strain (elonga-

tion) of 4 in the x1 direction, it is released to allow the turbulence to relax towards a

more isotropic state. Here the focus is on the single configuration with a peak non-

dimensional strain rate S∗0 = 25, which contains a velocity field that is very similar

to that studied in Chapter II. In §3.3 the application of strain was shown to lead

to the development of anisotropy in the scalar field, and that significant differences

emerge in certain large-scale quantities for scalars with mean gradients in different

directions. Specifically, the scalar with mean gradient in the streamwise direction

experienced a dramatic reduction in its production rate, while scalars with trans-

verse mean gradients had their production rates amplified through the contraction.

Such differences between scalars with mean gradients in different directions are then
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Figure 3.10: Post-contraction relaxation of (a) normalized scalar variance, (b) normal-
ized scalar production rate (open symbols) and normalized mean scalar dissipation
rate (closed symbols), and (c) ratio of production to dissipation. Black curves with
squares ( and ) for scalar with mean gradient in x1, red curves with circles ( and
) for scalar with mean gradient in x2, and blue curves with triangles ( and ) for

scalar with mean gradient in x3.

expected to persist in the post-contraction region.

Figure 3.10 begins with a presentation of the scalar variance evolution in the

post-contraction flow, along with its production and dissipation rates. Following the

notation of Chapter II, when normalizing quantities a subscript b denotes the value

taken immediately after the application of strain, just at the start of relaxation. In

frame (a), the post-contraction evolution of the scalar variance depends strongly on

the direction of the mean gradient. While the scalars with transverse mean gradients

quickly resume a quasi-linear growth rate like in the pre-contraction flow, the scalar

with mean gradient in the streamwise direction experiences a continued destruction

of scalar variance for at least one large-eddy turnover time into the relaxation. These

behaviors are explained by examining the production and dissipation rates, as shown

in frames (b) and (c). In frame (b), the production and dissipation rates for scalars

with transverse mean gradients quickly adjust, such that the ratio of production to

dissipation shown in frame (c) becomes close to 2. While the production rate for the

scalar with mean gradient in the streamwise direction appears to level off in frame (b),
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Figure 3.11: Post-contraction relaxation of (a) normalized scalar flux in the direction
of the mean gradient and (b) velocity-scalar correlation coefficient. Black curves with
open squares ( ) for scalar with mean gradient in x1, red curves with open circles ( )
for scalar with mean gradient in x2, and blue curves with open triangles ( ) for scalar
with mean gradient in x3.

it appears that the slow decay of the scalar dissipation rate results in a production-

to-dissipation ratio that slowly increases in frame (c). Although the production rates

shown in frame (b) contain all of the information of the scalar flux, the normalized

scalar flux is also shown in frame (a) of figure 3.11, which also includes the velocity-

scalar correlation coefficient in frame (b). For scalars with transverse mean gradients,

the correlation coefficient quickly takes on the nominal pre-contraction value; how-

ever, there is a very slow transient of the correlation coefficient for the scalar with a

streamwise mean gradient. Clearly, longer simulations (potentially on larger domains)

are required to determine how the first scalar equilibrates in the post-contraction flow.

Perhaps after a much longer transient period the correlation coefficient will approach

the nominal values attained by the other scalars.

The relaxation of the scalar gradients is shown in figure 3.12. In frames (b) and (c),

the nominal amount of pre-strain anisotropy in the scalar gradients is quickly attained

for the scalars with transverse mean gradients. GW show a qualitatively similar

relaxation of the scalar gradients, however, their results are shown as a function of a

thermal timescale. To perform a closer comparison with the work of GW, and to assess
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Figure 3.12: Post-contraction relaxation of scalar gradient anisotropy tensor for (a)
scalar with mean gradient in x1, (b) scalar with mean gradient in x2, and (c) scalar
with mean gradient in x3. Black curves with open squares ( ) for C ′11, red curves with
open circles ( ) for C ′22, and blue curves with open triangles ( ) for C ′33.

how well their models capture the evolution of the DNS data, the thermal timescale

reported below equation (2.22) in their work should be calculated and incorporated

into the present results. Similar to the slow evolution of the large scale quantities in

figures 3.10 and 3.11, the relaxation of the small scales is very slow for the scalar with

a streamwise mean gradient.

Finally, the relaxation of the 1-D scalar spectrum is presented in figure 3.13. Like

GW, the various spectra are normalized by the instantaneous value of the scalar

variance, which allows one to better understand the changes in the shape of the

spectrum. Similar to the results reported by AW for the component velocity spectra,

GW reported a bump appearing the scalar spectrum at high k1 wavenumbers following

the contraction. The results in frame (b), which are similar to GW in that transverse

mean gradients are used, shows very similar behavior (see their figure 13). The

increased spectral content at high wavenumbers is related to the production of scalar

gradients in the x1 direction, which was heavily suppressed during the contraction

(e.g., see the negative values that develop for C ′11 during the contraction in figure 3.9).

The spectrum for the scalar with a streamwise mean gradient also shows a rapid
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Figure 3.13: Post-contraction relaxation of 1-D scalar spectrum normalized by the
instantaneous scalar variance for (a) scalar with mean gradient in x1 and (b) scalars
with mean gradients in x2 and x3 (averaged between the two scalars). Curves taken
at times t/τb = 0 (black), t/τb = 0.1 (green), t/τb = 0.2 (blue), t/τb = 0.4 (red), and
t/τb = 0.6 (cyan) into the relaxation period. Insets show the spectra multiplied by
the wavenumber k1, e.g., k1Eθ(k1)/〈θ2〉.

increase at high wavenumbers, but attains a shape at low wavenumbers which appears

fundamentally different than the pre-contraction spectra shown in figure 3.8. Early

in the relaxation period (e.g., the green and blue curves at t/τ = 0.1 and t/τ = 0.2,

respectively), the scalar spectrum develops a more intricate shape, with a double-

peak structure that strongly resembles the AW result for the transverse 1-D velocity

spectrum. Additional analysis of the scalar spectral budget is required to understand

the development of the spectrum in the intermediate wavenumber range where the

double-peak occurs, where production and spectral transfer are expected to play an

important role.

3.5 Summary

This chapter presents a study of turbulent mixing under axisymmetric contraction,

with an emphasis on achieving similar conditions as the experiments of Gylfason &
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Warhaft (2009). Because the GW wind tunnel is the same as that used by Ayyalaso-

mayajula & Warhaft (2006), the simulations begin with a velocity field simulated in

the same manner as detailed in Chapter II, with the addition of three passive scalars

of Sc = 0.7 with uniform mean scalar gradients in different coordinate directions.

During a pre-simulation, both the velocity and scalar fields attain characteristics of

physical turbulence; while the velocity field decays (see Chapter II), the scalar fluc-

tuations develop naturally under the presence of mean scalar gradients. Following

the pre-simulation, mean strain is applied in the form of an axisymmetric contrac-

tion. The results show that rapid distortion theory predictions for the evolution of

the scalar variance, scalar spectrum, and scalar gradient anisotropy hold increasingly

well as the strain rate is increased. After a mean deformation (elongation) of 4 in the

streamwise (x1) direction is achieved, the strain is removed and the flow is allowed to

relax back toward a more isotropic state.

One important finding from these simulations is that the direction of the imposed

mean scalar gradient has a profound impact on the evolution of the scalar in the post-

contraction flow. While the GW experiments only consider the case of a transverse

mean scalar gradient, this study also includes a scalar with a mean streamwise scalar

gradient. Although mean streamwise gradients are rarely studied (Budwig et al.,

1985), they are relevant in industrial applications in which a scalar is injected at

varying rates from a fixed location into a flow. For the case of transverse mean scalar

gradients, the contraction alters large-scale and small-scale quantities, e.g., the scalar

variance production rate and the scalar gradient anisotropy, but when the strain is

removed they quickly relax to values (in a non-dimensional sense) not too-far removed

from those in the pre-contraction flow. It is the scalar with a mean streamwise scalar

gradient which behaves in a qualitatively different manner. During the application

of strain, scalar gradients are amplified to increase the scalar dissipation rate, much

like for the other scalars, but the production rate is dramatically reduced through the
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contraction (figure 3.6). This is the result of the mean scalar gradient being reduced

during the deformation, the effect of which is compounded by a reduction in the scalar

flux (figure 3.7). As a result of the reduced production rate and increased dissipation

rate, the scalar variance is destroyed in the post-contraction flow for a significant

amount of time (figure 3.10). Furthermore, the relaxation of this scalar appears to

be much slower than the other scalars, for both large-scale and small-scale statistics.

At this point the capability to simulate passive scalars under axisymmetric con-

traction has been verified, and the simulations provide support for many of the RDT

results derived by GW. Future efforts will focus on understanding the evolution of the

scalar spectrum through spectral budgets, in the same way as was done in Chapter II

for the component velocity spectra. One important quantity requiring additional at-

tention is the scalar flux, which must be understood to develop models for turbulent

mixing. The scalar flux, and its non-dimensional relative the velocity-scalar correla-

tion coefficient, were observed to change in a non-trivial manner for the scalar with

a streamwise mean scalar gradient. The budget equation for the scalar flux should

be examined, as well as the scalar flux spectrum, to gain more insight into the scalar

flux evolution. Also, the current study is limited to scalars with moderate Schmidt

numbers. In many applications, especially in liquid mixing, the Schmidt number can

be very high, which places the additional burden on the simulations that the Batch-

elor scales of the scalar field must be resolved. The next two chapters are focused on

the development and use of a new parallel algorithm to study turbulent mixing at

high Schmidt number.
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CHAPTER IV

ALGORITHMS FOR PETASCALE SIMULATIONS OF TURBULENT

MIXING AT HIGH SCHMIDT NUMBER

The study of the evolution of a high Schmidt number passive scalar in a turbulent

flow is challenging for both experiments and DNS due to the demanding resolution

requirements of the Batchelor scale ηB, which is
√
Sc times smaller than the Kol-

mogorov scale of the velocity field. At very high Sc, when the separation of scales

between the velocity and scalar fields is wide, it is computationally efficient in DNS

to decouple the numerical methods and computational grids used for the velocity and

scalar fields (Gotoh et al., 2012). Instead of using a communication-intensive FPS

scheme to compute both the velocity and scalar fields on a fine grid that resolves the

Batchelor scale, dramatic savings can be obtained by computing the velocity field on

a coarser grid of N3
v points which resolves the Kolmogorov scale, and then interpo-

lating it to a finer grid of N3
θ points used for the scalar, when needed. The governing

equation for a passive scalar (being an advection-diffusion equation) is also funda-

mentally different than the Navier-Stokes equations for the incompressible velocity

field in that a global coupling term like the hydrodynamic pressure is not present.

Because of the locality of the passive scalar equation, it is more efficient to employ

numerical methods which do not require communication-intensive implementations

like the FPS scheme. In particular, high-order combined compact finite differences,

which compute first and second derivatives simultaneously, are suitable for this task.

In this chapter the ideas of Gotoh et al. (2012) are extended to include the physics

of high Sc turbulent mixing as a driving factor in the design of a parallel code capable

of simulating mixing at petascale problem sizes. At high Sc, due to the disparate

computational requirements of the velocity and scalar fields, it is natural to separate
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the processes which compute the evolution of the two fields into disjoint groups. The

groups (i.e., communicators) are derived from the global set of processes used for

the combined simulation (i.e., MPI COMM WORLD), and the size of each group is easily

matched to the size of its problem. Because the passive scalar physics is one-way

coupled, the process groups are also one-way coupled: the communicator computing

the scalar field must retrieve the velocity field from the velocity communicator during

time integration. A code based on these principles is developed from existing FPS

and CCD code bases, and an emphasis is placed on the scalability of the algorithm to

the core counts required for petascale simulations of turbulent mixing. The resulting

code can run in homogeneous or heterogeneous computing environments, and makes

heavy use of OpenMP in both to improve overall scalability.

Much of what is presented in this chapter is available in the published work (Clay

et al., 2017) described in Appendix C. The sections below begin with a description of

the DNS algorithm for homogeneous computation (i.e., the CPU-only code), and then

present how the code was ported to run in heterogeneous computing environments.

In §4.1, background information is provided on the numerical schemes used for the

governing equations for the fluctuating velocity and scalar fields. Since the compu-

tation of derivatives using the CCD scheme is the most expensive operation overall,

§4.2 first focuses on the performance of several different implementations of the CCD

routines. Scaling data is obtained from a kernel code for a wide range of problem

sizes and number of processing elements (PEs, defined as the product of the number

of MPI processes and the number of OpenMP threads per MPI process). Then §4.3

describes how computations for the velocity and scalar fields are combined within a

dual-communicator approach. The acceleration of the code in heterogeneous com-

puting environments using OpenMP 4.5 is discussed in §4.4. Finally, §4.5 concludes

with a summary of what was achieved.
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4.1 Governing equations and numerical method

As noted earlier, in the algorithm for turbulent mixing at high Sc a FPS scheme is

used to compute the velocity field and a CCD scheme is used to compute the scalar

field on periodic domains with N3
v and N3

θ grid points, respectively. This section

provides a brief discussion of the numerical method and the parallel algorithm used

for each scheme separately. A later section discusses how the two schemes are merged

together to form a single code.

4.1.1 FPS scheme for the velocity field

The Navier-Stokes equations for conservation of mass and momentum in a viscous

fluid are well known. For turbulent flow of a fluid with constant density (ρ) and

kinematic viscosity (ν) and no mean velocity, the governing equations are

∂ui
∂xi

= 0 (4.1)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi , (4.2)

where ui is the fluctuating velocity, p is the fluctuating pressure, and fi may represent

an additional force of physical or numerical nature. Spectral methods are known for

high accuracy (Canuto et al., 2006) and are also very natural if information on scale

size is desired. Equations (4.1) and (4.2) are transformed to Fourier (wavenumber)

space, where the velocity Fourier coefficient ûi(ki, t) (with ki being the wavenumber

vector, of magnitude k = |ki|, carets denoting Fourier transforms, an no summation

being implied when ki appears as either a functional argument or a subscript) satisfies

∂ûi
∂t

= −ikjûiuj|⊥ki − νk2ûi + f̂i , (4.3)
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Figure 4.1: A schematic showing the 2-D domain decomposition and transposes re-
quired for a 3-D FFT from physical to wavenumber space (or vice versa). For simplic-
ity the case of a 2× 2 processor grid is shown, with processes labeled P0 to P3. After
each of the first two 1-D transforms a transpose via MPI ALLTOALL communication is
performed to regroup data into pencils along the next direction to be transformed.

where the Fourier transform of the nonlinear dyadic product uiuj is projected onto a

plane perpendicular to ki. In the pseudo-spectral approach costly convolution sums

are avoided in favor of multiplication in physical space followed by transformation

to wavenumber space. Double and triple aliased contributions stemming from the

nonlinear term are eliminated with a spectral truncation radius kmax =
√

2Nv/3 for

a N3
v cubic domain of size (2π)3 (Rogallo, 1981). The viscous term in (4.3) is treated

exactly by an integrating factor. Time integration is done with the classical fourth-

order Runge-Kutta (RK4) scheme, which offers good stability for the scalar field at

high Sc. Courant number constraints based on the finer scalar grid for numerical

stability are observed in choosing the time step ∆t.

The heart of the pseudo-spectral algorithm is the 3-D fast Fourier transform

(FFT). In the code FFTs are taken in each coordinate direction by calling 1-D FFT

library routines (Frigo & Johnson, 2005). Memory transposes needed to align the

data in different coordinate directions are accomplished with calls to MPI ALLTOALL

using a 2-D domain decomposition. Figure 4.1 shows an example in which the 3-D

solution domain is distributed over Mv = 4 parallel processes using a 2-D domain

decomposition. The data are stored as “pencils” and FFTs in each direction are

taken with stride-one arrays (Donzis et al., 2008). A complete 3-D transform requires

two transposes between pencils in different orientations. The “row” and “column”
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communicators used for the MPI ALLTOALL calls are formed within the velocity field

communicator.

4.1.2 CCD scheme for the scalar field

The scalar fluctuations θ evolve according to an advection-diffusion equation

∂θ

∂t
+ ui

∂θ

∂xi
= D

∂2θ

∂xi∂xi
+ fθ , (4.4)

where D is the molecular diffusivity and fθ is a forcing term. However, to improve

conservation properties for the scalar variance the skew-symmetric form (Durran,

2010, pp. 185–187) is employed, given by

∂θ

∂t
+

1

2

[
ui
∂θ

∂xi
+
∂uiθ

∂xi

]
= D

∂2θ

∂xi∂xi
+ fθ . (4.5)

A spatially uniform mean scalar gradient maintains the fluctuations, which gives

fθ = −ui∂〈Θ〉/∂xi with the mean scalar field 〈Θ〉 fixed in time. Because the velocity

field is on a coarse grid, in order to form the advective and mean-gradient terms the

velocity must first be received from the velocity communicator and then interpolated

onto the finer scalar grid. Tricubic interpolation is sufficiently accurate (Gotoh et al.,

2012). Integration in time is by the same explicit RK4 scheme described earlier for

the velocity field. However, the scalar field is advanced in time in physical space

instead of wavenumber space. It is thus necessary to calculate both first and second

derivatives of the scalar (the latter appearing in the Laplacian operator) accurately.

The general properties of high-order compact finite difference (CD) schemes are

well established (Lele, 1992). Here, the combined compact finite difference (CCD)

scheme refers to methods that calculate both first and second derivatives simulta-

neously (Mahesh, 1998). Based on numerical tests reported by Gotoh et al. (2012),

eighth-order CCD schemes are expected to have accuracy comparable to spectral
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methods. For a signal f defined on a 1-D grid of Nθ points with uniform spacing

h = xi+1 − xi, the first and second derivatives f ′i and f ′′i are determined by a system

of simultaneous equations consisting of (for i = 1, 2, . . . , Nθ)

51f ′i−1 + 108f ′i + 51f ′i+1 + 9h(f ′′i−1 − f ′′i+1) =
107

h
(fi+1 − fi−1)− fi+2 − fi−2

h
,

138(f ′i+1 − f ′i−1)− h(18f ′′i−1 − 108f ′′i + 18f ′′i+1) =

−fi+2 + fi−2

h
+

352

h
(fi+1 + fi−1)− 702

h
fi .

(4.6)

Appropriate modifications are made at the extreme end points to conform with pe-

riodic boundary conditions. Since the simulations are 3-D, the linear system above

must be solved in all three coordinate directions to obtain all the necessary derivatives

for (4.5). As can be seen from (4.6) the CCD scheme is implicit in that it couples

the grid points in the direction the derivative is taken, i.e., the first and second

derivatives are obtained simultaneously for all grid points on the grid line where the

derivative is taken. If entire lines of data are in the memory of each parallel process

then the solution for all unknowns on the left of these equations would be relatively

straightforward. However, such an approach would require communication-intensive

transposes of the type needed for the velocity field based on a 2-D decomposition

shown in figure 4.1.

Instead of a transpose-based algorithm based on a 2-D (or 1-D) domain decom-

position, a 3-D decomposition is used which is static and thus removes the need for

transposes (Gotoh et al., 2012). In this arrangement it is clear that no one processor

has the complete information required to solve the entire linear system in any direc-

tion. However it is possible for parallel processes along a given dimension of the 3-D

decomposition to communicate to solve the linear system in tandem. It is helpful to

consider (4.6) as a periodic block tridiagonal matrix system with 2×2 block elements.

The solution to the block matrix system is distributed among the parallel processes

using the method of Nihei & Ishii (2003), which generalizes the approach of Mattor

88



www.manaraa.com

Table 4.1: Operations required for the parallel solution to the CCD linear system (see
Appendix D). The eighth-order CCD scheme requires two ghost layers to be filled in
Operation A. The linear system for Operation B has size proportional to Nθ/P , where
P is number of parallel processes in the given coordinate direction. The size of the
linear system for Operation D is proportional to P . Communication calls are posted
in the MPI communicator for each coordinate direction.

Operation Operation Summary
A Fill ghost layers for scalar field with SEND and RECV operations
B Form right-hand side of linear system and obtain solution
C Pack and distribute data for reduced system with MPI ALLTOALL

D Unpack data and solve reduced linear system
E Pack and distribute data for final solution with MPI ALLTOALL

F Unpack data and finalize solution of CCD linear system

et al. (1995) for tridiagonal matrices. There are six operations required to solve the

CCD linear system in parallel, which are summarized in table 4.1 and discussed in

Appendix D. Clearly, ghost layer information must be exchanged among the processes

as required by the finite difference stencil, and this is accomplished in Operation A.

The linear system is then broken into three parts. First, in Operation B each pro-

cessor solves a “large” block tridiagonal system of size proportional to the number of

grid points the processor owns. Second, the solutions across multiple processes are

coupled by a “small” reduced system of size proportional to the number of processes

participating in the solution. In Operation C, the parallel processes exchange in-

formation required for the reduced system, and after the reduced system is solved in

Operation D, the necessary components of the solution required by each processor are

redistributed in Operation E. Finally, in Operation F the solutions from Operations B

and D are combined to complete the solution to the CCD scheme. As noted by Gotoh

et al. (2014), the parallel algorithm requires communication cost proportional to N2
θ ,

or the surface area, rather than the volume of the domain. This major reduction in

communication requirements at large problem sizes makes the CCD scheme and its

parallel solution an attractive alternative to transpose-based approaches.
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4.2 Parallel implementation and performance of the CCD scheme

The most expensive part of the computation in the dual-communicator production

code is application of the CCD scheme. It is therefore useful to isolate the CCD rou-

tines in a kernel to study and improve their performance independently of other parts

of the code. The subsections below begin with a presentation of baseline performance

data, and then move on to discuss improvements achieved by overlapping computa-

tion with non-blocking communication, and by the use of OpenMP multithreading

where a dedicated master thread performs communication while other threads com-

pute concurrently. Scalability data obtained on Blue Waters is presented for a wide

range of problem sizes and process counts.

4.2.1 Baseline performance of the CCD routines

To understand the performance characteristics of the codes, wall clock timings (via the

function MPI WTIME) are collected and analyzed over multiple steps of code execution.

Timings are collected on every MPI process over a period of at least 10 steps. For the

CCD kernel a “step” is the application of the CCD scheme. Since all MPI processes

must be synchronized at the end of each step the time reported by the slowest (rate-

limiting) process is used as the measure of performance. Because of factors such as

network contention from other jobs running concurrently on the system some degree

of statistical variability is expected. The best timing among all steps is used since it

provides a measure of the best achievable performance for a given version of the code

with minimal external interference.

The purpose of the CCD routine is to compute the first and second derivatives of

the scalar field. In the original version of the code (prior to enhancements addressed

later) the derivatives are formed sequentially, one direction at a time for the x1, x2

and x3 directions. For each direction the code performs the six operations identified
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Figure 4.2: Timings for single threaded execution of CCD routines with no overlap
between communication and computation for (a) derivative in x1, (b) derivative in
x2, (c) derivative in x3, and (d) overall timing of all three derivatives. See table 4.2
for description of symbols. The problem size, e.g., 10243, is given to the right of the
sloped line for each strong scaling dataset.

in table 4.1, which require communication among neighboring MPI processes both for

the ghost layer information and a parallel transpose-free solution algorithm for block

tridiagonal equations. In this version the communication is blocking, and the total

time used by the subroutine is the sum of computation and communication times.

Figure 4.2 shows elapsed wall clock times for the baseline CCD routines for deriva-

tives in x1, x2 and x3 directions (frames a-c), as well as the total time for all three

directions (frame d). At each problem size tested (Nθ from 1024 to 8192) the core

count Mθ is varied by factors up to 16. Perfect strong scaling is achieved when all

data points for a given Nθ fall on a line of slope -1 on logarithmic scales, and perfect
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Table 4.2: Number of MPI processes (Mθ) and process layouts used when testing sin-
gle threaded performance of CCD routines for a 10243 problem size. For each larger
problem size the number of processes is multiplied by 8, and each entry in the “Lay-
out” column is multiplied by two. For example, for 40963 the smallest configuration
is 4096 MPI processes with 16× 16× 16, 32× 16× 8, and 16× 32× 8 process layouts.

Mθ Layout Mark
64 4× 4× 4

8× 4× 2
4× 8× 2

128 8× 4× 4
4× 8× 4
4× 4× 8
16× 4× 2

Mθ Layout Mark
256 8× 8× 4

8× 4× 8
4× 8× 8
16× 4× 4

512 8× 8× 8
8× 16× 4
16× 8× 4

Mθ Layout Mark
1024 16× 8× 8

8× 8× 16
8× 16× 8
16× 16× 4
32× 8× 4 +

weak scaling is achieved when timings across different problem sizes lie on the same

horizontal line. For each combination of Nθ and Mθ, different process layouts are

represented by different symbols. This information is given explicitly for Nθ = 1024

in table 4.2 and can be inferred for all other larger problem sizes according to the

caption therein. For the targeted production problem at Nθ = 8192, five core counts

are tested, ranging from 32, 768 to 524, 288 with Mθ = 262, 144 being the value used

for production. In this case, the process layouts for Mθ = 262, 144 are inferred from

table 4.2 by scaling up each dimension from Nθ = 1024 by a factor of 8192/1024 = 8,

giving black asterisk for 64×64×64, red squares for 64×128×32, and blue triangles

for 128× 64× 32.

In figure 4.2 it is clear that calculation of derivatives in the x1 direction is the most

robust, and with the appropriate process layout, scales better than the derivative calls

in x2 and x3. The excellent strong scaling for x1 is a result of superior communication

performance in this direction. When the 3-D domain decomposition is initialized, MPI

processes are placed on the compute nodes sequentially — first in x1 direction, then

x2 and finally x3. Communication in the x1 direction therefore involves mostly intra-

node communication, and a reduced number of nodes for inter-node communication

compared to the other directions. For example, when using the configuration of 32
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MPI processes per XE6 node with a 64 × 64 × 64 process layout, communication in

the x1 direction involves 2 nodes, while communication in the x2 and x3 directions

involves 64 nodes. Furthermore, inter-node communication for the x1 direction is

very robust, because the node ordering scheme used by the topologically-aware job

scheduler on Blue Waters (Enos et al., 2014) ensures that adjacent nodes are very

close together in the torus network topology. One consistent trend for all three

derivative routines is that performance typically improves when the number of MPI

processes is reduced for that direction. Denoting the process layout P1 × P2 × P3,

when Nθ = 8192 and Mθ = 262, 144 derivatives in x1 give better timings if P1

is the smallest dimension, while derivatives in x3 perform better when P3 is the

smallest. This trend is understood by noting that when the number of processors

in a given direction is reduced the communication requirements for that direction

are also reduced. For example, if any one of P1, P2, or P3 is halved the number of

planes of data required to fill ghost layers in that direction is also halved, and the

complexity of the MPI ALLTOALL calls also reduces. However, if Mθ is fixed it is likely

that while CCD performance in one direction is improved by reducing the processor

grid dimension in that direction, performance in another direction may be worsened.

This effect is strongest for the x2 and x3 directions.

Since derivatives in all three directions are required, frame (d) of figure 4.2 is used

to assess the total CCD timings. Overall, sensitivity to the process layout is much

less than that observed for individual directions, but close observation shows that

process layouts which reduce communication complexity in the x3 direction are still

preferred, e.g., when Nθ = 4096 and Mθ = 65, 536, 64× 32× 32 and 32× 64× 32 are

both better than 32× 32× 64, and when Nθ = 8192 and Mθ = 524, 288, the process

layouts 128 × 128 × 32 and 256 × 64 × 32 give better overall results than process

layouts with 64 or more MPI processes in the x3 direction. Although strong scaling

is very good for 10243 and 20483, there is evidently a drop in scalability for 40963
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and 81923 at the large core counts used in production simulations. This limitation in

scaling performance of the baseline code provides the main motivation for pursuing

performance improvements in this work.

4.2.2 Overlapping communication and computation in the CCD routines

A well-known paradigm to improve the scalability of parallel algorithms is to try to

hide the cost of the communication calls by letting them occur simultaneously with

computation. In the code, since CCD operations for different coordinate directions are

independent of each other, there is a special opportunity to overlap communication for

one direction with computation for another direction. In fact multiple opportunities

exist since, as listed in table 4.1, for each coordinate direction the CCD scheme

requires three communication operations (A,C,E) which are naturally interleaved with

three other computational operations (B,D,F). To allow for overlapping, the code

calls non-blocking versions of MPI routines, in particular MPI ISEND, MPI IRECV, and

MPI IALLTOALL, combined with matching MPI WAIT calls to ensure that the required

data are received and in place before they are used in computational operations. In

principle, the potential for speedups through the use of overlapping is maximized

when the two operations scheduled to occur simultaneously take equal amounts of

time. With this algorithm, such a scenario is associated with cases where the fraction

of time spent in communication is close to 50%, which is more likely at larger problem

sizes. It may be noted that the opportunities for overlapping pursued here are not

readily available for pseudo-spectral codes.

Table 4.3 shows a detailed schedule of 26 operations in the overlapping algorithm

used to obtain first and second derivatives in all three directions. The number 26 is the

sum of 6 operations each (per table 4.1) for each of the three directions and 8 calls

to MPI WAIT for synchronization following non-blocking communication calls. The

algorithm starts with communication in the x1 direction because communication in
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Table 4.3: Rearrangement of CCD differentiation routine to overlap communication
and computation in all three coordinate directions. The subroutine progresses se-
quentially from Operation 1 to Operation 26. The letters in the Operation column
correspond to the entries in table 4.1, and the subscript indicates the coordinate
direction for the operation, e.g., A1 for filling the ghost layers in the x1 direction.

Op. x1 x2 x3

1 A1 SENDRECV

2 A2 ISEND/IRECV

3 B1 Compute
4 C1 IALLTOALL

5 A2 WAIT

6 A3 ISEND/IRECV

7 B2 Compute
8 C2 IALLTOALL

9 A3 WAIT

10 B3 Compute
11 C3 IALLTOALL

12 C1 WAIT

13 D1 Compute

Op. x1 x2 x3

14 E1 IALLTOALL

15 C2 WAIT

16 D2 Compute
17 E2 IALLTOALL

18 C3 WAIT

19 D3 Compute
20 E3 IALLTOALL

21 E1 WAIT

22 F1 Compute
23 E2 WAIT

24 F2 Compute
25 E3 WAIT

26 F3 Compute

this direction is the fastest. The code begins by filling ghost layers in the x1 direction

with a blocking MPI SENDRECV call (Operation A1). At this point the preparation of

ghost layers in the x2 direction (A2) by using non-blocking MPI ISEND and MPI IRECV

calls can proceed concurrently with a computation operation (B1) for the x1 direction.

Once step B1 completes, the code issues a non-blocking MPI IALLTOALL (C1) call on

the results while it checks if the communication operation A2 is completed. Once the

results from A2 are ready the code issues non-blocking MPI ISEND and MPI IRECV calls

to fill ghost layers in the x3 direction while it carries out the computational operation

B2. As the cycle progresses the code also checks if communication C1 is complete,

and then moves on with computation D1 when ready. Similar cycles of operations are

extended until the last operation (F3) on the third direction is completed.

Table 4.4 compares CCD timings with and without the overlapping discussed

above for problem sizes Nθ = 4096 (top) and 8192 (bottom). The timings are taken

from the process layout which gave the best overall performance. A measurable im-
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Table 4.4: Overall CCD timings in seconds, and strong and weak scalings for (top)
40963 and (bottom) 81923 grids. Weak scaling is relative to timings at 10243. Each
column is for a given number of MPI processes (K ≡ 1024). In each table, the
top section is for the implementation with blocking communication, and the bottom
section is for the implementation which overlaps communication and computation.

Mθ 4K 8K 16K 32K 64K
Blocking 4.403 2.249 1.268 0.695 0.411

Weak (%) 97.2 95.5 85.2 78.2 70.6
Strong (%) — 97.9 86.8 79.2 67.0

Overlap 4.386 2.202 1.209 0.671 0.359
Weak (%) 97.6 97.4 89.0 81.1 77.8
Strong (%) — 99.6 90.7 81.7 76.4

Mθ 32K 64K 128K 256K 512K
Blocking 4.717 2.651 1.484 0.936 0.599

Weak (%) 90.7 81.0 72.7 58.1 48.4
Strong (%) — 89.0 79.4 63.0 49.2

Overlap 4.518 2.477 1.359 0.768 0.527
Weak (%) 94.7 86.5 79.2 70.8 53.0
Strong (%) — 91.2 83.1 73.5 53.6

provement due to overlap is evident in all cases, and generally becomes more signifi-

cant with increases in either Nθ or Mθ. For the largest case of interest for production

runs, i.e., 81923 on 262, 144 cores, detailed profiling shows that the average fraction

(over all MPI processes and steps) of time spent in communication is 48%. This sug-

gests that the maximum possible reduction in timing is from 0.936 to 0.49 seconds.

However perfect overlapping is not possible since the operations at a fine-grained level

that are being overlapped (per table 4.3) can take different times. The actual overlap

achieved corresponds to 38% of this theoretical maximum, which is reasonable and

still represents a substantial improvement in performance overall.

4.2.3 Multithreading approach with dedicated communication threads

Most massively parallel processing systems available to the HPC community consist of

multi-cored processors. Since communication overhead due to a large number of MPI

processes is a common challenge to scalability, it is useful to explore if the introduction
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of shared-memory programming can produce improvements at large core counts. The

combination of distributed-memory and shared-memory programming is referred to as

hybrid programming, where the shared-memory parts of the code can be implemented

with OpenMP or MPI-3, among others. Such hybrid programming has improved

the performance of many large user codes in the field of fluid dynamics (Mininni,

2011; Jagannathan & Donzis, 2012). When using OpenMP, a common practice is to

operate in the so-called MPI THREAD FUNNELED mode in which all threads attached to

an MPI process compute with shared memory, but only the master thread performs

communication. If MPI communication calls (blocking or non-blocking) reside in

the parallel region, they can be encapsulated between !$OMP MASTER and !$OMP END

MASTER, with a subsequent !$OMP BARRIER if synchronization is needed. This is in

fact the approach used to thread the routines described in §4.2.1 and §4.2.2.

An alternative hybrid approach is to overlap communication and computation

explicitly by assigning certain threads to perform communication calls, while all other

threads compute concurrently (Rabenseifner & Wellein, 2003; Hager et al., 2011).

With OpenMP, such an approach can be implemented by spawning a large parallel

region that encompasses a subroutine of interest, and then dividing the region into

communication and computation sections. Each thread can be classified as either a

communication or computation thread and execute different lines of code accordingly.

However, when threads are split in this manner, the computation threads cannot use

standard OpenMP work-sharing directives, e.g., !$OMP DO, because some threads (the

communication threads) do not encounter the directives (Rabenseifner et al., 2009).

While it is possible to divide the work manually based on thread identifier, doing

so would be tedious and error prone because certain synchronization points such

as the implied barrier at !$OMP END DO would no longer be present. Fortunately,

these issues can be resolved by using nested OpenMP parallelism, which allows a new

master thread to be defined within the group of computational threads and standard
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work-sharing directives to be used within that group.

A multithreading strategy has been implemented with OpenMP to explicitly over-

lap communication and computation for derivatives in all three coordinate directions.

The majority of the CCD routine is contained in one large OpenMP parallel region,

which begins initially with 2 threads — one for communication and one for computa-

tion. The computation thread then spawns a nested OpenMP parallel region to use

all of the remaining threads available. It is important to have a mechanism in place

to enforce the proper order of execution for each part of the CCD scheme (detailed

in table 4.1) and to ensure proper shared memory synchronization between the com-

munication and computation threads. This coordination between the communication

and computation threads is accomplished with OpenMP locks, which as of version

2.5 of OpenMP imply the necessary memory flushes (Hoeflinger & de Supinski, 2005)

that make this approach viable. One OpenMP lock is created for each coordinate

direction. The lock for each direction is set before any work (communication or com-

putation) is performed for that direction, and unset when the work is completed so

that other threads can subsequently set the lock and access the results.

The details of the algorithm are illustrated in figure 4.3. Similar to implemen-

tations without multithreading (§4.2.2), the CCD calculations begin with commu-

nication in the x1 direction to fill the ghost layers in x1. Since no computations

can proceed until the x1 direction ghost layers are filled, this communication call is

left outside of the main OpenMP parallel region. Once the main parallel region is

spawned, the nested parallel region is spawned for the computational thread team,

and the threads move to set the OpenMP locks based on their initial work assign-

ments: the communication thread will fill ghost layers in the x2 and x3 directions,

while the computation threads will form and solve the initial linear system for the x1

direction (Operation B1 in table 4.3). To enforce the correct sequence of communica-

tion and computation operations for all coordinate directions, it must be ensured that
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COMMUNICATE x1 [A1]

CALL OMP INIT LOCK(x1,x2,x3)

CALL OMP SET NUM THREADS(2)

!$OMP PARALLEL DEFAULT(NONE) PRIVATE(tid,test) SHARED(x1,x2,x3,nth)

tid=OMP GET THREAD NUM()

tid=0 tid=1

CALL OMP SET LOCK(x2)

CALL OMP SET LOCK(x3)

! Spin until the x1 lock is set.

test=.TRUE.

DO WHILE(test)

test=OMP TEST LOCK(x1)

IF (test) CALL OMP UNSET LOCK(x1)

END DO

COMMUNICATE x2 [A2]

CALL OMP UNSET LOCK(x2)

COMMUNICATE x3 [A3]

CALL OMP UNSET LOCK(x3)

CALL OMP SET LOCK(x1)

COMMUNICATE x1 [C1]

CALL OMP UNSET LOCK(x1)

CALL OMP SET LOCK(x2)

COMMUNICATE x2 [C2]

CALL OMP UNSET LOCK(x2)

REST OF ALGORITHM

CALL OMP SET NUM THREADS(nth-1)

!$OMP PARALLEL

!$OMP MASTER

CALL OMP SET LOCK(x1)

! Spin until the x2 lock is set.

! Spin until the x3 lock is set.

!$OMP END MASTER

!$OMP BARRIER

!$OMP DO; COMPUTE x1; !$OMP END DO

!$OMP MASTER

CALL OMP SET LOCK(x2)

CALL OMP UNSET LOCK(x1)

!$OMP END MASTER

!$OMP BARRIER

!$OMP DO; COMPUTE x2; !$OMP END DO

REST OF ALGORITHM

!$OMP END PARALLEL

!$OMP END PARALLEL

CALL OMP DESTROY LOCK(x1,x2,x3)

Figure 4.3: Outline of hybrid MPI-OpenMP implementation of CCD code in which
one thread performs communication and all other threads perform computation.
The first parallel region is always spawned with two threads, where tid stands for
thread identifier. The total number of threads available (including the communi-
cation thread) is nth. The dashed lines during the !$OMP MASTER region illustrate
other computation threads being idle while locks are exchanged. The general pattern
repeats until all steps in table 4.1 are complete for all coordinate directions. The
descriptions for each communication call, e.g., [C1], follow those given in the caption
of table 4.3.
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neither thread group advances to its first task until it is known that all locks have

been properly set. To accomplish this, each thread group checks that the other thread

group has set its lock(s) with the help of the OMP TEST LOCK function. The actual

code used is illustrated in the left of figure 4.3 for the communication thread, and the

master thread of the computation thread team performs the same operations to check

that the locks for the x2 and x3 coordinate directions were properly set by the com-

munication thread. All computations are performed in the large (nested) OpenMP

parallel region, which has sufficient flexibility to divide the workload among the com-

putation threads with standard work-sharing directives. The code then progresses

through the complete cycle of operations outlined in table 4.3, with the exception

that blocking communication is used, hence no MPI WAIT calls are necessary. After

each computation operation is complete the master computation thread exchanges

locks with the communication thread. A subsequent !$OMP BARRIER in the nested

OpenMP region synchronizes the computational thread team before they begin the

next set of computations.

As with any OpenMP algorithm, there is a risk of losing computational efficiency

if there is a load imbalance among the threads. In the algorithm described in this

section, there are two sources of load imbalance. The first is quite obvious: since

Nθ, Mθ as well as the total thread count per MPI process are all even numbers (and

powers of 2), when one thread is removed from the computation section of the code

the workload can no longer be divided equally among the threads. When using this

routine on BW XE6 nodes one MPI process with 8 OpenMP threads is assigned

to each NUMA domain, thus leaving only 7 out of 8 threads per MPI process to

execute the nested parallel region. When the number of iterations in a loop is, say,

512, a loop using !$OMP DO SCHEDULE(STATIC) results in the first 6 threads being

responsible for 74 units of work, while the last thread is responsible for 68, which

amounts to a modest imbalance of the order 10%.
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A second source of load imbalance encountered is specific to the Blue Waters ar-

chitecture. The BW XE6 nodes are comprised of two AMD 6276 Interlagos processors

(Bode et al., 2013), and each processor contains two NUMA domains comprised of

four floating point cores. There are two integer cores on the processor per floating

point core, thus giving the eight integer cores per NUMA domain to which the MPI

process (master thread) and computational threads are assigned. When the master

thread is split off to perform only communication, the other integer core sharing a

floating point core with this thread is automatically provided with exclusive access to

the computational resources equivalent to two integer cores. This means one of the

threads in the OpenMP parallel regions will be consistently — tests show as much as

40% — faster than the others. As a result, the default STATIC scheduling of OpenMP

loops, which assigns approximately equal workloads to each thread, does not provide

the best performance attainable.

To alleviate both the software and hardware driven load imbalances above it is

profitable to use GUIDED instead of STATIC scheduling. This allows units of work

to be assigned in chunks to the threads as the threads request them, where under

GUIDED scheduling the chunk size starts high and is gradually reduced to a minimum

value specified by the user. In this manner threads which can compute faster will

be allocated more units of work as the loop iterations are computed. A slight im-

provement in performance can be expected, subject to the caveat that more thread

synchronization is required when using GUIDED scheduling, because many loops can

no longer be appended with the NOWAIT clause. Various OpenMP loop schedules were

tested to see if the load imbalances could be reduced while resulting in faster overall

execution of the CCD routines. Eventually !$OMP DO SCHEDULE(GUIDED,1), i.e., the

minimum chunk size being one, was used, because it provided a few percent speedup

in the CCD routine and is a flexible loop schedule.
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4.2.4 Improvements in performance obtained from different strategies

This section is concluded by presenting and comparing timings obtained from a total

of five different implementations of the CCD routines for computing first and second

derivatives in all three coordinate directions. For convenience, the following two-letter

acronyms are used for the various implementations:

BS Blocking communication, single threaded (baseline version)

OS Overlap communication and computation, single threaded

BM Blocking communication, multithreaded

OM Overlap communication and computation, multithreaded

ON Overlap communication and computation with nested multithreading

Although implementations BS and OS have been compared already in table 4.4, for

a complete discussion data from all implementations is presented in both graphical

(figure 4.4) and tabular (table 4.5) forms. For BM and OM tests were conducted

with 2, 4 and 8 threads per MPI process, and the data shows the best timings among

the three choices of thread count. Weak scaling is inferred relative to the case of

Nθ = 1024 along the horizontal dashed lines in figure 4.4, while noting that the

computational operations count is proportional to N3
θ . Strong scaling for each Nθ is

inferred based on the smallest number of PEs tested. It is clear from figure 4.4 that at

smaller problem sizes (up to 20483) all implementations show near-perfect scalability,

and single threaded, i.e., pure MPI, approaches suffice. However, at large problem

sizes and PEs (to which table 4.5 is restricted) the picture is quite different.

As expected, the baseline implementation (BS) where operations are performed

sequentially with no attempt at overlap is the least efficient. However, even without

any overlap of communication and computation, a hybrid MPI-OpenMP approach

(implementation BM, the open non-square blue symbols) with a smaller number of

MPI processes scales better than pure MPI. This improvement can be explained by
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Figure 4.4: Timings for different implementations of the CCD routine that calculate
derivatives in all three coordinate directions, versus the number of processing elements
(defined as the product of the number of MPI processes and the number of OpenMP
threads per MPI process). Some symbols are partially hidden as they overlap with
one another. Open symbols denote implementations where derivatives are taken
independently with no overlap of communication and computation: black squares
( ) for single threaded version, and blue symbols for best performing (with respect to
thread count) multithreaded version with , , and for 2, 4, and 8 OpenMP threads,
respectively. Filled symbols denote implementations which overlap communication
and computation: green squares ( ) for single threaded version, and red symbols for
best performing (with respect to thread count) multithreaded version with , , and

for 2, 4, and 8 OpenMP threads, respectively. Cyan star ( ) for overlapping and
nested-parallelism implementation in which a dedicated thread per NUMA domain
performs communication and no computation.
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Table 4.5: Overall CCD timings in seconds, with strong and weak scaling results for
(top) 40963 and (bottom) 81923 grids. Weak scaling is relative to timings at 10243.
Each column is for a given number of processing elements (PEs, with K ≡ 1024),
defined as the number of MPI processes multiplied by the number of OpenMP threads
per MPI process. Each horizontal block is for a different implementation with the two-
letter codes defined at the beginning of this section. The symbols given in parenthesis
match those in figure 4.4 for each implementation. Subroutine ON uses one MPI
process per NUMA domain (4 per BW XE6 node) with 8 OpenMP threads per MPI
process. For BM and OM the timing from the best MPI-OpenMP configuration for
a given problem size is reported (see symbol shapes in figure 4.4 for the number of
threads).

PEs 4K 8K 16K 32K 64K
BS ( ) 4.403 2.249 1.268 0.695 0.411

Weak (%) 97.2 95.5 85.2 78.2 70.6
Strong (%) — 97.9 86.8 79.2 67.0

OS ( ) 4.386 2.202 1.209 0.671 0.359
Weak (%) 97.6 97.4 89.0 81.1 77.8
Strong (%) — 99.6 90.7 81.7 76.4
BM ( , , ) 4.349 2.231 1.171 0.632 0.361
Weak (%) 97.4 95.0 91.1 84.9 76.8
Strong (%) — 97.5 92.9 86.0 75.4
OM ( , , ) 4.331 2.176 1.132 0.603 0.322
Weak (%) 97.6 97.0 93.6 88.5 84.7
Strong (%) — 99.5 95.7 89.8 84.0

ON ( ) 4.429 2.230 1.112 0.567 0.298
Weak (%) 99.9 99.1 98.6 97.7 94.5
Strong (%) — 99.3 99.6 97.6 92.9

PEs 32K 64K 128K 256K 512K
BS ( ) 4.717 2.651 1.484 0.936 0.599

Weak (%) 90.7 81.0 72.7 58.1 48.4
Strong (%) — 89.0 79.4 63.0 49.2

OS ( ) 4.518 2.477 1.359 0.768 0.527
Weak (%) 94.7 86.5 79.2 70.8 53.0
Strong (%) — 91.2 83.1 73.5 53.6
BM ( , , ) 4.641 2.358 1.397 0.820 0.496
Weak (%) 91.3 89.9 76.4 65.4 55.9
Strong (%) — 98.4 83.1 70.7 58.5
OM ( , , ) 4.510 2.322 1.358 0.757 0.438
Weak (%) 93.7 90.9 78.0 70.5 62.3
Strong (%) — 97.1 83.0 74.4 64.3

ON ( ) 4.454 2.259 1.157 0.616 0.351
Weak (%) 99.3 97.8 94.7 89.9 80.3
Strong (%) — 98.6 96.2 90.3 79.3
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noting that when the number of MPI processes is reduced the overall volume of data

required to fill ghost layers as well as the complexity of the MPI ALLTOALL calls are

reduced. Implementations OS and OM (closed green squares and closed non-square

red symbols, respectively) which are designed to overlap communication and compu-

tation also produce measurable if not dramatic performance gains. For example, for

the case Nθ = 8192 and 262, 144 PEs the overall timing drops from 0.820 to 0.757

seconds when using OM in favor of BM. It is clear that the more elaborate approach

of employing a dedicated communication thread with nested OpenMP parallelism for

computations described in §4.2.3 (designated ON, with cyan star symbols) gives the

best timing, beating the BS time of 0.936 seconds for 81923 on 262, 144 PEs with a

time of 0.616 seconds — a 34% improvement. This approach maintains strong scaling

of effectively 80% over an sixteen-fold increase of core count and 80% weak scaling

over an eight-fold increase in problem size (Nθ = 1024 versus Nθ = 8192).

While the primary production problem sizes of interest are 40963 and 81923, some

timings for a 163843 problem are also included in figure 4.4 using as many as 524, 288

PEs. Since tests at this scale are expensive, they are limited to the cases of 1 and

8 OpenMP threads, and have used a fewer number of process layout combinations

than tests at smaller problem sizes, e.g., for 1 OpenMP thread and 262, 144 PEs only

128 × 64 × 32 and 64 × 64 × 64 process layouts were tested. It is encouraging to

note that implementation ON performs well for this problem size with 97% and 92%

weak-scaling relative to 10243 timings at 262, 144 and 524, 288 PEs, respectively. In

addition, the strong scaling when increasing from 262, 144 to 524, 288 PEs is 95%.

In addition to timings and scalability data, measurements are taken to assess

the floating point and memory performance of the code. Since Blue Waters is a

Cray machine these types of data are obtained by instrumenting the CCD routines

with low-level Fortran routines provided by the CrayPat application programming

interface (API) (CRAY, 2015). While implementation ON performs best, because of
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Table 4.6: Floating point and memory usage statistics for OS version of the CCD
routine for problems Nθ = 1024, Nθ = 2048, and Nθ = 4096 run on 2, 16, and 128
BW XE6 nodes, respectively. Each BW XE6 node has a maximum FLOP rate of 313
GFLOP/s, which is used to calculate the percentage of peak floating point utilization.
The read memory bandwidth (“Read BW”) is normalized by the read portion of the
memory bandwidth attained by the STREAM triad benchmark (38.8 GB/s). “L1
Hit” gives the fraction of memory accesses that were found in the L1 cache.

Nθ % Peak FLOP/s FLOP/N3
θ % Read BW L1 Hit (%)

1024 5.90 153.6 77.8 97.9
2048 5.86 153.7 77.2 98.0
4096 5.81 153.7 76.4 98.0

some issues with CrayPat reporting when using OpenMP, these floating point and

memory metrics are reported for the (single threaded) OS implementation only. Using

the CrayPat API, the entire CCD routine is enclosed in a “region” to be monitored.

Although it is possible to measure loop-level performance, the overall performance of

the CCD routine including communication and computation is of primary interest.

A summary of floating point and memory usage statistics is given in table 4.6

for problem sizes Nθ = 1024, 2048, and 4096 using 2, 16, and 128 BW XE6 nodes,

respectively. These problem sizes form a weak scaling study and are run on MPI

process layouts 4× 4× 4, 8× 8× 8, and 16× 16× 16, respectively. The floating point

performance of the subroutine is evaluated by comparing the floating point operation

(FLOP) rate to the theoretical maximum for the number of BW XE6 nodes used

(each node having a maximum of 313 GFLOP/s). The CCD routine achieves close to

6% of the peak FLOP rate, which compares well with other large production codes

run on BW (Bauer et al., 2016). As the problem size increases this percentage is

expected to drop due to an increase in communication overhead. This effect appears

to be only slight but will be stronger for problem sizes larger than those listed in the

table. A normalized FLOP count (FLOP/N3
θ ) for the CCD routine is also provided.

Because the linear system corresponding to the CCD scheme is factorized once at the

106



www.manaraa.com

beginning of the simulation, the normalized FLOP count is approximately constant.

The memory performance of the CCD subroutine is assessed by measuring the

read bandwidth from main memory using L3 cache misses (Bauer et al., 2016). In-

stead of comparing with the maximum theoretical memory bandwidth for each node

(102.4 GB/s (Bode et al., 2013)), comparisons are made with the the bandwidth at-

tained by the STREAM TRIAD benchmark (McCalpin, 1995), which is similar to the

LAPACK subroutine DAXPY. To take the reference measurement, the MPI Fortran

version of STREAM is compiled with O3 optimization and run on one XE6 node

using 32 MPI processes. Each MPI process uses 768 MB of memory, i.e., the entire

program uses 24 GB of the 64 GB available memory on the node, and the test is

run for 40 steps. The STREAM TRIAD benchmark reports a memory bandwidth of

58.2 GB/s. Since the TRIAD benchmark counts two loads and one store per itera-

tion, the read bandwidth is obtained by multiplying the raw bandwidth figure by 2/3,

giving a read bandwidth of 38.8 GB/s. To check the validity of this modification, an

independent test was run with a CrayPat-instrumented STREAM executable, which

showed that the read bandwidth measured from L3 cache misses is within 2% of the

modified STREAM TRIAD bandwidth. As shown in table 4.6, the CCD routine at-

tains approximately 75%–80% of the STREAM benchmark, suggesting that the code

is memory-bandwidth bound. Finally, a L1 hit ratio of 98% also shows the cache is

being used efficiently.

Compact finite difference schemes are an important class of numerical methods for

solving multi-dimensional partial differential equations arising in many different fields

of science. As parallel computers evolve from multi-core to many-core, the principles

behind the “best” approach of overlapping via dedicated thread(s) for communication

and nested OpenMP parallelism for computation should be of general interest. The

next section focuses on how the new parallel CCD algorithm is coupled with the

velocity field through a dual communicator approach.
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4.3 Parallel implementation and performance of the high Sc code

In this section the FPS and CCD algorithms are combined to create a new code for

DNS of turbulent mixing at high Sc. First a description of the dual-communicator

implementation is provided, followed by a presentation of scaling data.

4.3.1 A dual-communicator algorithm for simulations at high Sc

The new DNS code is built upon two existing code bases: an FPS code for comput-

ing the velocity field governed by the Navier-Stokes equations, and a CCD code for

computing the scalar field governed by an advection-diffusion equation. The MPI

processes constituting the global communicator MPI COMM WORLD are divided into two

groups forming two disjoint intra-communicators, called FPS2D COMM and CCD3D COMM

for FPS and CCD, respectively. A vital aspect of the new code is the nature of in-

formation transfer between MPI processes belonging to the different communicators.

While some of the data transfer can be handled through MPI COMM WORLD, an ex-

plicit inter-communicator named PSCCD COMM (created with MPI INTERCOMM CREATE)

is used when sending information like the time step size and signals that coordinate

writing checkpoints or statistical output.

Figure 4.5 shows a schematic of the inter-communicator transfer required to couple

the Navier-Stokes and scalar field codes. The task at hand is to send the entire

velocity field from the velocity communicator to the scalar communicator, where it

it used to form the advective terms necessary to advance the scalar field in time.

The velocity field is on a coarser grid with a 2-D decomposition, where each MPI

process holds a “pencil” formed at the intersection between two row and column

sub-communicators of size M1 and M2 along the x2 and x3 directions, respectively.

The scalar field is on a finer grid with a 3-D decomposition based on three sub-

communicators i world, j world and k world formed by a P1 × P2 × P3 process
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Figure 4.5: Illustration of the (left) physical-space orientation of the 2-D domain
decomposition for the velocity field and the (right) orientation of the 3-D domain
decomposition for the scalar field. In this example 4 processors are used for the
velocity field and 64 processors are used for the scalar field. Patterns are shown on
the two domains to illustrate how different portions of velocity field “pencils” are
sent to the scalar field processors. Communication occurs by sending entire portions
of the “pencils” from the velocity field communicator to the respective root process
in the i world scalar field communicator, which then scatters the data to the other
processors.

layout. The FPS pencils are aligned in the same coordinate direction (x1) as the

i world sub-communicator. The configuration seen in figure 4.5 corresponds to the

case of M1 = M2 = 2 and P1 = P2 = P3 = 4. The inter-communicator transfer

required is one way, and is implemented using discrete sends and receives. In the

example shown each of the M1 ×M2 = 4 pencils in the FPS2D COMM communicator is

split into P1 × P2/M1 × P3/M2 = 16 small cubes in the CCD3D COMM communicator,

which can be accomplished by sending a total of 16 small messages (1 to each of 16

recipients). On the other hand, if P2 < M1 and P3 < M2, each sending FPS2D COMM

process will send only 1 message, but each CCD3D COMM process will have to receive

from multiple senders. The prospect of many small messages with either multiple

recipients per sender or multiple senders per recipient is clearly not optimal, especially

at large core counts.

To address the challenges above an alternative scheme is used in which each

FPS2D COMM process sends a sub-pencil to only the root process in the target i world
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Figure 4.6: Time stepping procedure in the dual-communicator code for the first
Runge-Kutta sub-stage. Velocity field solution on the left (blue) using FPS scheme,
and scalar field solution on the right (red) using CCD scheme. The velocity field
and time step are sent from the FPS communicator to the CCD communicator using
inter-communicator transfers during each step of time integration.

communicator. The data is subsequently distributed to the other processes in the

i world communicator via MPI SCATTER. This approach reduces the number of mes-

sages sent from FPS2D COMM to CCD3D COMM by a factor of P1, and is efficient because

communication in the x1 direction is very robust, as discussed in §4.2.1. The number

of messages can be minimized by matching M1 with P2, and M2 with P3. Some of the

largest simulations use M1 and M2, as well as P1, P2 and P3 all equal to 64. Finally,

the messages in both the inter-communicator send and receive pairs and the scatter

within the i world communicators are not contiguous in memory. This is addressed

by using MPI derived datatypes defined through MPI TYPE CREATE SUBARRAY instead

of explicit packing and unpacking.

In the dual-communicator algorithm, it is desirable for operations on the two

communicators to be executed concurrently as much as possible. Figure 4.6 shows

the essential operations for the first of four sub-stages in the classical RK4 time

integration scheme. Subsequent sub-stages follow the same procedures except that

the time step size ∆t will already be known. At the beginning of each RK4 sub-
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stage the velocity is in Fourier space and the scalar is in physical space. The FPS

processes transform the velocity to physical space, while CCD processes compute the

first and second derivatives of the scalar field needed for advection and diffusion terms,

respectively. The velocity field is then transferred from the FPS2D COMM communicator

to the CCD3D COMM communicator. Subsequently the FPS processes continue with

forming nonlinear terms and transforming those to Fourier space. At the same time

the CCD processes fill ghost layers for the velocity field under periodic boundary

conditions and then interpolate the velocity to the finer grid to calculate the advective

and mean-gradient terms. Tricubic interpolation, which provides sufficient accuracy,

is used (Gotoh et al., 2012). The interpolation does take significant resources but

requires no communication and thus scales perfectly. The time step ∆t is computed

by the FPS processes considering the Courant number criterion for numerical stability

based on the spacing of the finer scalar grid. When the CCD processes are ready to

advance in time the value of ∆t is made available to them by inter-communicator

transfer. The time advance itself is implemented separately using the same RK4

scheme as for the velocity in Fourier space, but in physical space for the scalar field.

Several other opportunities for optimization merit further discussion. Since the

FPS and CCD processes execute different instructions, even when the core counts

deployed for each problem are proportional to the number of grid points there is no

expectation that they will complete their respective time steps in the same wall clock

time. On the other hand, since the coupling between the FPS2D COMM and CCD3D COMM

communicators is one-way, the velocity field communicator is not required to be on the

same RK4 sub-stage as the scalar field communicator. The code allows the velocity

field integration (which will take less time by design) to get a few sub-stages ahead

of the scalar field, which means that the velocity communicator must be able to send

multiple velocity field realizations to the scalar communicator. Although the velocity

field processors may be left idle for a faction of the time that is not a concern since the
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overall cost of the simulation is still dominated by the larger scalar field problem. This

asynchronous approach is implemented by allocating a number of buffer arrays for

the velocity field and time step on the scalar processors, and then setting up distinct

non-blocking MPI IRECV calls for each sub-stage. The number of slots in the buffer

arrays, i.e., the number of sub-stages by which the velocity field can get ahead in

integration, is controlled by a user input to the code. In practice, to avoid creating a

burden in memory usage, the buffer size is limited to 3 or 4. If the FPS processors get

ahead by too many RK4 sub-stages they will wait for empty slots in the buffer arrays

owned by the CCD processors to become available. The advantage of performing the

time integration in an asynchronous fashion is that it allows the code to hide part of

the communication cost of the data transfer between the communicators.

Depending on the parameters but especially at higher grid resolutions, turbulence

simulations are often carried out over many thousands of time steps. Usually at

approximately regular time intervals the code computes and outputs a number of

statistical quantities, such as the turbulence kinetic energy and its spectrum. In the

FPS code the energy spectrum is readily formed in wavenumber space by summing

over the energies of Fourier modes which are already naturally available as part of the

numerical solution. In the present code for scalar fields, since the numerical solution

is based on CCD methods entirely in physical space, a 3-D Fourier transform must

be taken specifically for the purpose of computing the spectrum (whose functional

form at high Sc is of great interest (Batchelor, 1959; Donzis & Yeung, 2010)). While

the scalar field is on a 3-D domain decomposition, the FPS code base already pro-

vides highly optimized routines for 3-D FFTs on a 2-D decomposition. To use those

FFT routines the code performs a transpose of the scalar field from a 3-D to 2-D

domain decomposition with a series of of MPI IRECV and MPI SEND calls within in the

CCD3D COMM communicator. This allows existing FFT routines, which after initializa-

tion only function for one grid resolution to be used at different resolutions by MPI
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processes on the two distinct communicators (FPS2D COMM and CCD3D COMM). While

output steps have a higher wall clock time, they are infrequent and are thus not a

heavy addition to the overall simulation.

4.3.2 Parallel performance of dual-communicator DNS code

This subsection reports on the performance of the new dual-communicator DNS

code. As done when analyzing the CCD routines, timings are collected with calls

to MPI WTIME. For each step the maximum time is taken among all MPI processes,

and then the performance is assessed by taking the minimum over a number of time

steps. Only regular time steps are considered, which do not include the additional

costs of forming statistics or writing checkpoints. In addition to measuring the overall

wall clock per time step, sub-timings for different parts of the code are also collected,

including the CCD routines, performing interpolation, forming advection terms, and

the time-advance component of each RK4 sub-stage. An emphasis is placed on per-

formance measurements for the grid configuration Nθ/Nv = 8, which is used for

simulations with Schmidt number 64 or higher.

Because the problem size for the scalar field is larger than the velocity field by a fac-

tor proportional to (Nθ/Nv)
3, the cost of the simulation is expected to be dominated

by the scalar field computation. The dual-communicator nature of the algorithm also

implies that the code will be most efficient if the velocity and scalar field core counts

are chosen in proportion to the workload borne by each communicator. Otherwise, if

Mv is too small the velocity field computation may potentially slow down the code,

leaving the larger group of processes in CCD3D COMM waiting for transfer of the velocity

field. On the other hand, an overly large Mv would be wasteful.

Figure 4.7 shows the effects of the velocity-field core count Mv on the elapsed wall

time per step of the dual-communicator DNS code for the problem size of Nθ = 4096

andNv = 512. The FPS routines are run in pure MPI mode with 32 MPI processes per
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Figure 4.7: Wall clock time per step in seconds for dual-communicator code with
Nv = 512 and Nθ = 4096 as a function of the number of PEs used for the velocity field.
The velocity field is computed using 32 MPI processes per BW XE6 node. Different
symbols represent different node counts used for the scalar field: black squares ( )
for 256 nodes, green circles ( ) for 512 nodes, upward facing blue triangles ( ) for
1024 nodes, and downward facing red triangles ( ) for 2048 nodes. The scalar field is
computed using the ON version of the CCD routine described in §4.2.4.

XE6 node on Blue Waters, while the CCD routines for the scalar field were run using

the implementation ON (see §4.2.3). Different symbols represent data where the scalar

field communicator consists of 256, 512, 1024 and 2048 nodes, respectively. For each

configuration the task is to determine the minimum number of MPI processes that

must be used for the Navier-Stokes communicator so that the velocity field calculation

does not slow down the entire code. This number is identified as the number of MPI

processes beyond which the wall clock time per step no longer decreases. For example,

when using 1024 nodes for the scalar field (corresponding to the upward facing blue

triangles) 256 MPI processes (8 nodes) suffice for the velocity communicator.

Overall timings and scalability of the dual-communicator DNS code are shown in

figure 4.8, where the scalar field problem size is varied from Nθ = 1024 to Nθ = 8192

and in each case the number of PEs is varied by a factor of eight. The velocity field
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Figure 4.8: Overall simulation time per step as a function of the number of process-
ing elements for the scalar field code. The symbols indicate which version of the
CCD routine was employed during the run (see §4.2.4). Open symbols for routine
in which derivatives are taken independently with no overlap of communication and
computation: black squares ( ) for single threaded version, and blue symbols for best
performing (with respect to thread count) multithreaded version with , , and for
2, 4, and 8 OpenMP threads, respectively. Filled symbols for routine which calculates
all derivatives at once and overlaps communication and computation: green squares
( ) for single threaded version, and red symbols for best performing (with respect
to thread count) multithreaded version with , , and for 2, 4, and 8 OpenMP
threads, respectively. Cyan star ( ) for hybrid MPI-OpenMP routine in which a
dedicated thread per NUMA domain performs communication and no computation.
Timings shown for best performing process layout in each case. The number of pro-
cessing elements is the product of the number of MPI processes and the number of
OpenMP threads per MPI process.
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problem size is a factor of Nθ/Nv = 8 smaller. Following the discussion for figure 4.7,

the velocity field core count Mv is chosen so that it does not slow down the overall

simulation and is not wasteful of resources on its own. Different symbols in the figure

represent performance obtained with different implementations of the CCD routines

as described in §4.2. Numbers for weak and strong scaling are presented in table 4.7

for the two largest production problem sizes, namely Nθ = 4096 and Nθ = 8192.

Weak scaling is inferred relative to the case of Nθ = 1024 along the horizontal dashed

lines in figure 4.8, and strong scaling for each Nθ is inferred based on the smallest

number of PEs tested. Because of additional memory usage in the DNS code, the

initial number of PEs used is a factor of two larger than those used in the analysis of

the CCD kernel in §4.2.4. In addition, due to the cost of the runs, tests at Nθ = 8192

and 524, 288 PEs were conducted with fewer process layouts than tests at smaller PE

counts, and the multithreaded routines were only tested with eight threads.

The picture conveyed by figure 4.8 has a number of similarities to that in figure 4.4,

suggesting that the performance of the DNS code is heavily influenced by the perfor-

mance of the CCD routines. This is not surprising, since at every RK4 sub-stage of

time integration the CCD routines are called twice: once to compute the derivatives

of the scalar field and a second time to compute the derivatives of the velocity-scalar

products. At the two smaller problem sizes (Nθ = 1024 and Nθ = 2048), the strong

and weak scalings are robust, and the timings are only mildly sensitive to the choice

of the CCD routine. As the problem size is increased to Nθ = 4096 and Nθ = 8192

the scalability observed is somewhat better than that seen earlier in figure 4.4, while

the sensitivity to specific CCD implementations decreases. This suggests that other

operations executed by the processes in the scalar field communicator also make sub-

stantial contributions to the timings, and that those other operations scale better than

the CCD routines. Nevertheless, the dual-communicator code is least efficient when

using the most basic version of the CCD routine which is single threaded and does
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Table 4.7: Overall simulation time per step in seconds, and strong and weak scaling
results for (left table) Nθ = 4096 and (right table) Nθ = 8192 problem sizes. Each
column is for a given number of processing elements for the scalar field code (PEs,
with K ≡ 1024), defined as the number of MPI processes multiplied by the number
of OpenMP threads per MPI process. Each horizontal block represents the version
of the CCD routine used by the scalar field code, with abbreviations detailed at the
beginning of §4.2.4 The symbols given in parenthesis match those in figure 4.8 for
each subroutine. Subroutine ON uses one MPI process per NUMA domain (4 per
BW XE6 node) with 8 OpenMP threads per MPI process. For BM and OM the
timing is reported for the best MPI-OpenMP configuration for a given problem size
(see symbol shapes in figure 4.8 for the number of threads).

PEs 8K 16K 32K 64K
BS ( ) 30.7 16.5 8.95 5.08

Weak (%) 95.5 88.8 82.7 76.1
Strong (%) — 92.9 85.8 75.7

OS ( ) 30.3 16.1 8.66 4.67
Weak (%) 96.7 91.3 85.2 81.4
Strong (%) — 94.3 87.4 81.1
BM ( , , ) 30.3 15.7 8.34 4.74
Weak (%) 95.5 92.7 88.2 79.5
Strong (%) — 96.4 90.9 80.0
OM ( , , ) 29.8 15.3 8.13 4.43
Weak (%) 97.4 95.0 89.9 84.1
Strong (%) — 97.3 91.5 83.9

ON ( ) 30.1 15.0 7.62 3.99
Weak (%) 98.6 98.8 97.9 95.2
Strong (%) — 100 98.7 94.3

PEs 64K 128K 256K 512K
BS ( ) 34.8 20.4 10.8 6.57

Weak (%) 84.2 72.2 68.8 58.7
Strong (%) — 85.6 80.8 66.2

OS ( ) 33.4 18.3 9.51 6.09
Weak (%) 87.6 80.3 77.6 62.4
Strong (%) — 91.5 87.8 68.6
BM ( , , ) 34.4 18.4 9.99 5.59
Weak (%) 84.4 79.3 73.7 67.4
Strong (%) — 93.4 86.0 76.8
OM ( , , ) 32.6 17.8 9.34 5.29
Weak (%) 88.8 81.8 78.2 70.5
Strong (%) — 91.8 87.3 77.2

ON ( ) 30.7 16.2 8.15 4.51
Weak (%) 96.7 91.5 91.6 84.2
Strong (%) — 94.7 94.1 85.1

not overlap communication and computation (version BS marked with open black

squares). Consistent with the CCD performance data in §4.2.4, even with blocking

communication, performance can be improved by reducing the number of MPI pro-

cesses through hybrid programming. For both the single threaded and multithreaded

versions, greater gains in performance are obtained when non-blocking communi-

cation is used. However, the best results are obtained when the OpenMP threads

are split to perform separate communication and computational work (version ON

marked with cyan stars).

To quantify the costs of various portions of the code, table 4.8 shows a detailed
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Table 4.8: A breakdown of the cost of each time step into contributions from various
operations, reported by MPI processes responsible for the scalar field. The timings
reported are the average timings over all MPI processes and steps (excluding the first
and last step). The scalar field code uses the ON version of the CCD routine. The
numbers of PEs used for the scalar are 32, 768 and 262, 144, i.e., 1024 and 8192 BW
XE6 nodes, respectively.

Nv = 512, Nθ = 4096 Nv = 1024, Nθ = 8192
Operation Time (s) Percent (%) Time (s) Percent (%)

Scalar Derivatives 2.30 29.7 2.59 30.5
Diffusion Term 0.28 3.6 0.28 3.3

Receive Velocity 0.07 1.0 0.20 2.4
Interpolation 2.12 27.3 2.14 25.2

Advection Derivatives 2.36 30.4 2.61 30.8
Advection Term 0.28 3.6 0.28 3.3
Time Advance 0.28 3.7 0.28 3.3

Sum and % of Total 7.70 99.4 8.40 98.9

breakdown of the wall clock time per step for problem sizes Nθ = 4096 and Nθ = 8192.

The operations presented were summarized previously in figure 4.6. The focus is on

the average instead of the minimum or maximum timings to ensure that the total

percentage is close to 100%. The successive rows in the table correspond to the order

in which different operations occur at every RK4 sub-stage, but only including those

which account for at least 1% of the wall time per step.

Based on the timings reported in table 4.8, calculating the derivatives of the scalar

field takes about 30% of the overall cost. The diffusion term is then calculated by

simply adding the three second derivatives and multiplying them by the molecular

diffusivity. At this point the velocity field must be transferred from the velocity

field communicator to form the advection terms. The cost of the transfer is between

1%–3% of the overall cost of the simulation. The code then enters a routine in

which tricubic interpolation is used to interpolate the velocity field onto the fine

grid. The interpolated values at each point of the finer scalar grid are not stored

but are used immediately to form the advection and mean-gradient forcing terms.
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This interpolation accounts for 25% of the overall cost. The next step is to calculate

the derivatives of the velocity-scalar products, which are required to complete the

skew-symmetric form of the advection terms. This cost is approximately equal to

the cost of calculating the scalar derivatives in the first operation, i.e., 30% of the

overall cost. Although, strictly speaking, only the first (not the second) derivatives

of the velocity-scalar products is required, it is important that this first derivative is

computed using the same numerical scheme, i.e., the same CCD equations, as done

for the derivatives of the scalar field itself. The skew-symmetric form of the advection

terms is then finalized (Operation “Advection Term”). At this point the scalar field

uses the time step from the velocity-field processors to advance the scalar field. The

transfer of the time step itself (a single word) takes a trivial amount of time and is

not reported in the table.

When comparing results for the two problem sizes in table 4.8 it is clear that as the

problem size is increased from 40963 to 81923, operations that involve communication

(“Scalar Derivatives”, “Receive Velocity”, and “Advection Derivative”) show a non-

trivial increase in absolute timings with an accompanied mild increase in percentage

contribution. On the other hand, the interpolation shows near-perfect weak scaling,

as expected. One possibility for further optimization is the use of accelerator-based

heterogeneous computing, especially the use of Graphical Processing Units (GPUs)

that allow substantial speedups in computation. Such an effort is reported next.

4.4 Acceleration of DNS code using OpenMP 4.5

This section provides the details of how GPUs are utilized to accelerate the DNS

code. Since the total cost of a simulation is almost entirely dictated by the scalar

field computation, only the operations carried out in the scalar field communicator are

accelerated. In §4.4.1, an overview of how the DNS code is modified for heterogeneous

computing environments is given, and an emphasis is placed on how operations are
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scheduled between CPUs and GPUs to minimize data movement. In §4.4.2, the

parallel implementation of the compact scheme is discussed, followed by a presentation

of how OpenMP 4.5 is used to perform the acceleration in §4.4.3.

4.4.1 Memory management and schedule of operations

In both homogeneous and heterogeneous computing environments, a major factor

influencing algorithm design is that of memory placement on the underlying hardware.

While the focus in homogeneous computing is on NUMA latencies, in heterogeneous

environments additional complications arise when memory spaces on the CPU and

GPU are distinct. For example, while each CPU on the XK7 architecture has access

to 32 GB of memory, each Kepler GPU provides only 6 GB of memory, which imposes

a severe constraint on algorithm design. To minimize the number of nodes required

for the simulations while still allowing the entire memory space to fit into the GPUs,

the code has been refactored to reduce memory usage. The largest arrays dominating

the memory usage are proportional to N3
θ in volume, and include the three arrays

required for RK4 time integration, and six arrays for derivatives (first and second

derivatives in each coordinate direction). A substantial reduction in memory usage

compared with the CPU-only version of the code is achieved by modifying the RK4

routine so that every term represented on the right-hand side of (4.5) is immediately

added to the partial Runge-Kutta updates, without using additional arrays to store

them. This re-factoring reduces the number of Cray XK7 nodes needed for the main

target problem size (Nθ = 8192) from 16,384 for the scalar to 8192, which is also

more economical in terms of resources charged.

While the reductions in memory reduced the number of nodes required for the

simulations, the avoidance of additional arrays increased the complexity of the RK4

time integration procedure. In addition, now that the scalar field is computed entirely

on the GPU, additional memory transfers of the incoming velocity field from the
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Table 4.9: Summary of the operations during each sub-stage of RK4 time integration.
The second column lists the device for each operation, with “All” meaning that the
CPU, PCI bus, and GPU are used. Steps that occur within the same loop nest are
appended with letters, e.g., 2A and 2B must occur in the same loop because otherwise
2B could not occur after the scalar field is updated during 2A. The code uses Fortran
derived datatypes for the CCD scheme, and the ds1, ds2, and ds3 arrays are 3-D
arrays of the derived datatypes, which contain two elements each, e.g., ds1%a for
the first element, and ds1%b for the second element. Upon return from the CCD
subroutine, the first element contains the first derivative, and the second element
contains the second derivative.

Step Device Operation Summary
1 All Calculate and store scalar derivatives in x1, x2, x3 in ds1, ds2, ds3
2A GPU RK4 diffusion term (get 2nd derivatives from ds1%b, ds2%b, ds3%b)
2B GPU Store current sub-stage value of scalar in ds3%b

3 CPU Receive velocity field and fill ghost layers with halo exchange
4 PCI Transfer velocity field from CPU to GPU
5 GPU Interpolate u1 and u2 velocities into ds1%b and ds2%b arrays
6A GPU RK4 non-conservative advective and forcing terms in x1 and x2

6B GPU Store θu1 in ds1%a and θu2 in ds2%a (get θ from ds3%b)
7 GPU Interpolate u3 velocity into ds1%b array
8A GPU Increment RK4 non-conservative advective and forcing terms in x3

8B GPU Store θu3 in ds3%a (get θ from ds3%b)
9 All Calculate advective derivatives in x1, x2, x3 in ds1, ds2, ds3 arrays
10 GPU RK4 conservative advective terms in all coordinate directions

velocity communicator to the GPU through the PCI bus are required. As a result,

the time integration procedure in the accelerated code contains a few more steps

compared to the algorithm shown in figure 4.6 for the CPU code. Table 4.9 shows

an outline of the operations for each RK4 sub-stage of the scalar field in the new

CPU-GPU code. As in the CPU version, the code begins each RK4 sub-stage by

calling CCD routines with the scalar field and computes first and second derivatives

in each direction (step 1). As part of the effort to reduce memory usage, the arrays

used to store these derivatives are re-used for other purposes as much as possible. For

example, after the diffusion term is added to the RK4 updates (step 2A) the memory

for the second derivatives is freed, and one slot is used to hold the value of the scalar
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field at the current sub-stage (step 2B). Next, after communication of the velocity

field to the scalar communicator is complete (step 3), it is transferred to the GPU

(step 4), where there is enough free memory to interpolate two velocity components

(step 5). The code is now in a position to calculate other terms on the right-hand

side of (4.5) which involve the first two velocity components (step 6A, 6B). After

this is done, storage space is now available for operations involving the third velocity

component (steps 7, 8A, 8B). Finally, the code collects information required for the

skew-symmetric form of the advective terms (step 9) which completes the current

RK4 sub-stage (step 10).

4.4.2 Asynchronous algorithm for the CCD scheme

While the application of the CCD scheme is the most expensive operation in a simula-

tion, there are considerable opportunities to improve the scalability and performance

of the CCD subroutines (and thereby the DNS code) by overlapping communication

with computation as much as possible. Such strategies were explored in §4.2 for the

CPU version of the code, and here they are extended to the algorithms used in het-

erogeneous computing environments with distinct memory spaces for the CPU and

GPU. Both algorithms rely on the static 3-D domain decomposition made possible by

the parallel algorithm used to solve the CCD equations (Nihei & Ishii, 2003). Under a

3-D domain decomposition, since a direct solution of the CCD system in any coordi-

nate direction is not possible, a series of alternating communication and computation

operations are used to assemble the solution to the entire CCD linear system. All

communication operations are directional, taking place in sub-communicators of the

3-D domain decomposition containing the processors which share grid points along a

common grid line (illustrated in figure 4.5).

A detailed schedule of the operations required to solve the CCD system in parallel

for a single coordinate direction in heterogeneous computing environments is shown
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Table 4.10: Summary of sequential operations required to apply the CCD scheme in
a single coordinate direction in a heterogeneous computing environment with distinct
CPU and GPU memory spaces. When using a 3-D domain decomposition, the com-
munication calls in steps 3, 8, and 10 reside in the directional sub-communicator in
the direction the derivatives are being taken.

Step Device Operation Summary
1 GPU Pack ghost layer information into contiguous buffer
2 PCI Update ghost layer information from GPU to CPU
3 CPU Exchange ghost layers with MPI SENDRECV

4 PCI Update ghost layer information from CPU to GPU
5 GPU Form right-hand side of linear system and obtain solution
6 GPU Pack data required for reduced linear system
7 PCI Update data for reduced linear system from GPU to CPU
8 CPU Distribute data for reduced linear system with MPI ALLTOALL

9 CPU Unpack data and solve reduced linear system
10 CPU Distribute data for final solution with MPI ALLTOALL

11 PCI Update data required for final solution from CPU to GPU
12 GPU Finalize solution of CCD linear system

in table 4.10. At the start of this process, it is assumed that the signal to be differen-

tiated resides in the GPU memory space. (In the DNS code, the scalar fluctuations

and the advective terms are differentiated, as shown in steps 1 and 9 of table 4.9.)

Because the CCD scheme has a finite stencil, ghost layers must be exchanged with

neighboring processors, which requires packing ghost layer information into buffers

on the GPU (step 1) and then updating the CPU with that data (step 2). After the

ghost layers are exchanged (step 3), the GPU is updated (step 4), after which the

first computations for the CCD scheme can proceed (step 5). As part of the parallel

algorithm necessitated by the 3-D domain decomposition, the processes along a given

grid line must coordinate to solve a reduced linear system. This requires packing

some of the results computed in step 5 on the GPU (step 6), so the CPU can be

updated (step 7) for the required communication (step 8). Importantly, the required

computations for the reduced linear system are trivially small, so that leaving the

computations on the CPU (step 9) is more economical than introducing additional
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memory movements to solve the reduced linear system on the GPU. Once the reduced

linear system is solved, the results are redistributed to the other processes (step 10),

after which the GPU is updated (step 11) and the final solution to the CCD scheme

is obtained (step 12).

In order to overlap communication with computation for the CCD scheme, the

code exploits the fact that the operations listed in table 4.10 for each coordinate di-

rection are independent of one another. The operations in table 4.10 for all coordinate

directions can therefore be interleaved and the asynchronous capabilities of hetero-

geneous computing environments can be used to achieve the desired overlap. In the

algorithm, this is achieved by launching all available GPU kernels for a given coordi-

nate direction asynchronously, so that the master thread on the CPU can immediately

proceed to a communication call for another coordinate direction. To illustrate how

these concepts are used in the code, a detailed schedule of the operations for the

asynchronous algorithm is shown in table 4.11. Because communication in the x1

direction includes some intra-node communication and is therefore more robust than

communication in x2 or x3, the algorithm begins by filling ghost layers in x1, which

requires packing a buffer (step 1) and updating the CPU with the ghost layer informa-

tion (step 2). However, before proceeding with the MPI SENDRECV call to exchange the

ghost layers, the necessary operations to pack ghost layers and update the CPU for

the x2 and x3 directions are launched asynchronously (steps 3-6), so they may occur

concurrently with the ghost layer exchange (step 7). Once the ghost layers in x1 are

exchanged, a series of kernels are launched asynchronously (steps 8-11) to perform the

initial computations in the x1 direction. Because the kernels for the x1 direction are

launched asynchronously, the master thread can immediately proceed to verify that

the x3 ghost layer information is updated on the CPU (step 12) and then exchange the

ghost layers with MPI SENDRECV (step 13). The general pattern of launching kernels

for one coordinate direction, while proceeding to synchronize and then communicate
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Table 4.11: Operations for asynchronous CCD algorithm. Operations which do not
have their execution deferred appear in the “Blocking” column, while operations that
are launched asynchronously on the GPU appear in the “Asynchronous” column.
Order of operations enforced with dependencies given in the “Depends” column.

Step Depends Blocking Asynchronous
1 Pack Ghost x1

2 Update CPU x1

3 Pack Ghost x3

4 3 Update CPU x3

5 Pack Ghost x2

6 5 Update CPU x2

7 SENDRECV x1

8 Update GPU x1

9 8 Compute x1

10 9 Pack Data x1

11 10 Update CPU x1

12 4 Synchronize x3

13 SENDRECV x3

14 Update GPU x3

15 14 Compute x3

16 15 Pack Data x3

17 16 Update CPU x3

18 6 Synchronize x2

19 SENDRECV x2

20 Update GPU x2

21 20 Compute x2

22 21 Pack Data x2

23 22 Update CPU x2

24 11 Synchronize x1

25 ALLTOALL x1

26 Reduced sys. x1

27 ALLTOALL x1

28 Update GPU x1

29 28 Final soln. x1

30 17 Synchronize x3

31 ALLTOALL x3

32 Reduced sys. x3

33 ALLTOALL x3

34 Update GPU x3

35 34 Final soln. x3

36 23 Synchronize x2

37 ALLTOALL x2

38 Reduced sys. x2

39 ALLTOALL x2

40 Update GPU x2

41 40 Final soln. x2

42 29,35,41 Sync. x1,x2,x3
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for another coordinate direction continues until all operations listed in table 4.10 are

completed for all coordinate directions. While the exact amount of overlap that can

be achieved depends on the cost of each communication and computation step listed

in table 4.11, the current algorithm strives to ensure that the master threads on the

CPUs are at attempting to communicate at all times, which is necessary to achieve

the maximum benefit.

4.4.3 Implementation using OpenMP 4.5

Now that the accelerated algorithm for the DNS code (§4.4.1) and the asynchronous

algorithm for the CCD scheme (§4.4.2) have been described, their implementations

for production simulations on the Cray XK7 machine Titan are presented. To avoid

extensive code rewrites, a major objective when porting the code to run on GPUs was

to keep the original Fortran code base intact. By using a directive-based approach

such as OpenMP or OpenACC, many computational kernels can be offloaded to the

GPUs with relative ease, thus allowing one to focus on the higher-level code restruc-

turing that is required to run on GPUs, e.g., controlling the data flow between the

CPU and GPU memory spaces, and reorganizing the RK4 subroutine due to mem-

ory constraints. OpenMP is well-suited to address the needs of the DNS code, since

in OpenMP 4.5 the essential clauses to enable asynchronous GPU algorithms were

added to the device constructs, i.e., the TARGET tasks, which are needed to implement

the asynchronous CCD algorithm presented in table 4.11. The Cray Compiler Envi-

ronment (CCE) has supported many OpenMP 4.5 features since release 8.5, and in

all of the work for the accelerated code CCE version 8.5.7 has been used.

Before any computational work can be done on the GPUs, the user must ensure

that the memory space on the GPU is properly initialized with the required data.

As described in the OpenMP 4.5 standard (OMP, 2015), the OpenMP model for

accelerated computing is “host-centric,” meaning that data resides on the host (i.e.,
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the CPU) until it is explicitly mapped to the device (i.e., the GPU) by the user for

the required computations. In OpenMP, the basic construct used to perform GPU

computations is the TARGET construct, which can be appended with MAP clauses to

specify memory movements or memory allocations which are required for a single

computational kernel. Data movements can be minimized with the TARGET DATA

construct, which allows the user to create a data environment on the GPU that

is inherited by all TARGET constructs contained within the region generated by the

TARGET DATA construct. While the arrays are mapped once to the GPU with TARGET

DATA, at times the GPU must be explicitly updated with data from the CPU (e.g.,

the updated velocity field at each RK4 sub-stage), or (on occasion) the CPU must be

updated with data from the GPU to perform certain statistical analyses (e.g., obtain

the scalar spectrum by taking the FFT of the scalar field on the CPUs). Such explicit

data movements are made with the TARGET UPDATE construct, where the clause TO

indicates that data is moved from the CPU to the GPU, and the clause FROM indicates

that data is moved from the GPU to the CPU.

The current usage of data movement constructs provided by OpenMP is illustrated

in the pseudo-code in figure 4.9. The top frame outlines the execution of the main

Fortran program, which begins by initializing all memory on the CPU required for

the simulation. Once the code is initialized, the velocity field communicator proceeds

to time advance the velocity field (a CPU-only calculation), while the scalar field

processors must continue to initialize the GPU memory space for the scalar field

computation. All arrays required for the scalar field computation are initialized once

on the GPU with a TARGET DATA region surrounding the entire time-advance loop.

During time stepping, if a checkpoint of the scalar field is to be written out, the

explicit data movement is made with TARGET UPDATE FROM (line 14 in the top frame

of figure 4.9), which ensures the required data is transferred from the GPU to the

CPU before it is written out. The bottom frame of figure 4.9 also shows the general
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1 PROGRAM DNS_CODE

2 ! Code initialization.

3 IF (velocity_field_process) THEN

4 ! Time advance the velocity field.

5 ELSE IF (scalar_field_process) THEN

6 ! Move data to the GPU.

7 !$OMP TARGET DATA MAP(TO:scalar_field ,...)

8 ! Time advance the scalar field.

9 DO step=1,num_steps

10 CALL RK4_TIME_ADVANCE

11 !

12 ! Periodically write checkpoint on CPU.

13 IF (checkpointing_step) THEN

14 !$OMP TARGET UPDATE FROM(scalar_field)

15 CALL WRITE_CHECKPOINT(scalar_field)

16 END IF

17 END DO

18 !$OMP END TARGET DATA

19 END IF

20 END PROGRAM DNS_CODE

1 SUBROUTINE RK4_TIME_ADVANCE

2 ! Create data environment for subroutine.

3 !$OMP TARGET DATA MAP(TO:scalar_field ,...)

4 DO runge_kutta_stage =1,4

5 ! Perform computations , e.g., calculate

6 ! derivatives of scalar field.

7 CALL CCD_SUBROUTINE(scalar_field ,ds1 ,...)

8 !

9 ! Receive velocity field and update GPU.

10 CALL RECEIVE_VELOCITY_FIELD(u1 ,u2 ,u3)

11 !$OMP TARGET UPDATE TO(u1 ,u2 ,u3)

12 !

13 ! Continue computations , e.g., form

14 ! advective and forcing terms.

15 CALL TRICUBIC_INTERPOLATION(u1 ,ds1)

16 CALL TRICUBIC_INTERPOLATION(u2 ,ds2)

17 END DO

18 !$OMP END TARGET DATA

19 END SUBROUTINE RK4_TIME_ADVANCE

Figure 4.9: Pseudo-code illustration of how OpenMP TARGET DATA and TARGET

UPDATE constructs are used to create data regions in the code and to explicitly move
data, respectively. In the top frame, an outline of the main Fortran program file is
given, where before time stepping begins all data is mapped to the GPU. The bottom
frame includes some code snippets from the RK4 subroutine, with an emphasis on
some of the subroutines called and the data movements made for the three velocity
components, which are stored in the u1, u2, and u3 arrays.
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structure and data movements that occur in the RK4 subroutine. While it is known

that the working arrays for the simulation are already mapped to the GPU in the

main program file, each subroutine also includes a TARGET DATA region so the routines

can function in a standalone manner, if ever necessary. In the RK4 subroutine,

the important data movement illustrated in the pseudo-code (lines 10-11) involves

obtaining the velocity field from the velocity field communicator, and then updating

the GPU memory space with a TARGET UPDATE TO construct.

As mentioned previously, the most expensive operation in the code is the applica-

tion of the CCD scheme. In the CCD subroutine, all work on the GPU, either in the

form of actual computations or packing memory buffers, is made possible with the

TARGET construct. The computational kernels which are launched, i.e., the TARGET

tasks, are in the form of nested Fortran DO loops, which the Cray compiler auto-

parallelizes for GPU threading when the construct includes the essential ingredients

TARGET TEAMS and DISTRIBUTE. As others have noted (Lopez et al., 2016), the nec-

essary clauses that must be added to the TARGET construct to get good performance

can be vendor-specific, and with CCE version 8.5.7 it appears that the compiler can

well-parallelize a loop for the GPU with TARGET TEAMS and DISTRIBUTE as long as the

loop nest is clearly vectorizable (often checked by viewing the compiler listings). In

order to make the execution between the CPU and GPU asynchronous, the GPU ker-

nels launched with the TARGET construct are appended with the task-oriented clauses

added in OpenMP 4.5. To make a TARGET task deferred, i.e., “non-blocking,” such

that the CPU thread can progress on to subsequent tasks while the GPU kernel is

running concurrently, the NOWAIT clause must be used. While the NOWAIT clause en-

ables the CPU thread to move on with its execution, some of the other tasks the

CPU will perform include launching GPU kernels which depend on the completion

of previously-launched kernels. To ensure the proper order of execution on the GPU,

the DEPEND clause must also be used, where DEPEND(IN:var), DEPEND(OUT:var), and
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DEPEND(INOUT:var) can be used to control the sequence of execution based on data

dependencies (e.g., a variable var).

To elucidate these concepts further, figure 4.10 provides pseudo-code which high-

lights how the OpenMP 4.5 DEPEND and NOWAIT clauses are utilized to implement an

asynchronous algorithm for the CCD scheme. In this version of the subroutine, there

is a single input signal, which is to be differentiated in all three coordinate directions.

After the GPU data environment is initialized (lines 11-12), a kernel is launched to

pack ghost layer information for the x1 direction (lines 14-19), which is then followed

up with a data movement from the GPU to the CPU (lines 21-22). Before proceeding

with the MPI communication call to exchange ghost layers in the x1 direction, the

necessary kernels to pack and update the CPU with ghost layer information in x2

and x3 are launched. Focusing just on the operations for the x3 direction, a kernel is

launched asynchronously to pack the necessary buffer (lines 24-29) with an outward

dependency on a dummy variable sync 3, which is used throughout the subroutine

to order the execution of x3-direction TARGET tasks. Because the subsequent task to

update the CPU with the x3-direction ghost layer information (lines 31-32) contains

an inward dependency on sync 3, it cannot begin until the packing task is complete.

With work on the GPU progressing for the x3 and x2 directions, the CPU proceeds

to exchange ghost layers in the x1 direction (lines 43-44). Once the ghost layers are

exchanged, all available tasks for the x1 direction are launched asynchronously (lines

46-64), with the proper order of operations enforced by using the DEPEND clause with

the dummy variable sync 1.

With much of the initial work for the x1 direction underway on the GPU, ghost

layers in the x3 direction can be exchanged, but only after making sure that the

previously-enqueued asynchronous update (lines 31-32) is complete. This is accom-

plished with an empty TARGET task with a dependency on sync 3 (lines 66-70), and

once this synchronization task is complete, the ghost layers are exchanged (lines 72-
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1 SUBROUTINE CCD_SUBROUTINE(signal ,ds1 ,ds2 ,ds3)

2 ! Array with signal to differentiate.

3 REAL ,DIMENSION (:,:,:), INTENT(INOUT) :: signal

4 ! Arrays to hold derivatives.

5 TYPE(VECTOR),DIMENSION (:,:,:), INTENT(OUT) :: ds1 ,ds2 ,ds3

6 ! Arrays to move data between CPU and GPU.

7 REAL ,DIMENSION (:,:) :: buf_1 ,buf_2 ,buf_3

8 ! Dummy variables for task dependencies.

9 INTEGER :: sync_1 ,sync_2 ,sync_3

10
11 ! Map data to accelerator.

12 !$OMP TARGET DATA MAP(TO:signal ,ds1 ,ds2 ,ds3 ,buf_1 ,...)

13
14 ! Pack X1 ghost layers (step 1)

15 !$OMP TARGET TEAMS

16 !$OMP DISTRIBUTE

17 <Pack buf_1 with X1 ghost layer information in signal >

18 !$OMP END DISTRIBUTE

19 !$OMP END TARGET TEAMS

20
21 ! Update CPU with X1 ghost layer information (step 2)

22 !$OMP TARGET UPDATE FROM(buf_1)

23
24 ! Asynchronously pack X3 ghost layers (step 3)

25 !$OMP TARGET TEAMS DEPEND(OUT:sync_3) NOWAIT

26 !$OMP DISTRIBUTE

27 <Pack buf_3 with X3 ghost info. in signal >

28 !$OMP END DISTRIBUTE

29 !$OMP END TARGET TEAMS

30
31 ! Asynchronously update CPU with X3 ghost info. (step 4)

32 !$OMP TARGET UPDATE FROM(buf_3) DEPEND(INOUT:sync_3) NOWAIT

33
34 ! Asynchronously pack X2 ghost layers (step 5)

35 !$OMP TARGET TEAMS DEPEND(OUT:sync_2) NOWAIT

36 !$OMP DISTRIBUTE

37 <Pack buf_2 with X2 ghost layer information in signal >

38 !$OMP END DISTRIBUTE

39 !$OMP END TARGET TEAMS

40
41 ! Asynchronously update CPU with X2 ghost info. (step 6)

42 !$OMP TARGET UPDATE FROM(buf_2) DEPEND(INOUT:sync_2) NOWAIT

Figure 4.10: See caption on next page.
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43 ! Exchange ghost layers in X1 (step 7)

44 CALL MPI_SENDRECV(buf_1 ,...)

45
46 ! Asynchronously update GPU with X1 ghost info. (step 8)

47 !$OMP TARGET UPDATE TO(buf_1) DEPEND(OUT:sync_1) NOWAIT

48
49 ! Asynchronously launch computations in X1 (step 9)

50 !$OMP TARGET TEAMS DEPEND(INOUT:sync_1) NOWAIT

51 !$OMP DISTRIBUTE

52 <Compute in X1 with results going into ds1 >

53 !$OMP END DISTRIBUTE

54 !$OMP END TARGET TEAMS

55
56 ! Asynchronously pack data in X1 (step 10)

57 !$OMP TARGET TEAMS DEPEND(INOUT:sync_1) NOWAIT

58 !$OMP DISTRIBUTE

59 <Pack required X1 data in buf_1 >

60 !$OMP END DISTRIBUTE

61 !$OMP END TARGET TEAMS

62
63 ! Asynchronously update CPU with X1 info. (step 11)

64 !$OMP TARGET UPDATE FROM(buf_1) DEPEND(INOUT:sync_1) NOWAIT

65
66 ! Synchronize X3 ghost update (step 12)

67 !$OMP TARGET DEPEND(IN:sync_3)

68 ! This is an empty , included task , which cannot begin until

69 ! the X3 ghost update (step 4) is complete.

70 !$OMP END TARGET

71
72 ! Exchange ghost layers in X3 (step 13)

73 CALL MPI_SENDRECV(buf_3 ,...)

74
75 ! Rest of algorithm (steps 14 -41).

76 <Compute and communicate in X1 , X2 , and X3 >

77
78 ! Synchronize final X1, X2, and X3 computations (step 42).

79 !$OMP TASKWAIT

80
81 ! Close structured data region.

82 !$OMP END TARGET DATA

83
84 END SUBROUTINE CCD_SUBROUTINE

Figure 4.10: Pseudo-code illustration of initial steps in the CCD subroutine, with an
emphasis how the OpenMP 4.5 clauses DEPEND and NOWAIT are used to make CPU
and GPU execution asynchronous. Entire subroutine listing split over two pages,
progressing from line 1 to line 84 consecutively. Horizontal lines correspond to those
in table 4.11, and separate operations for different coordinate directions.
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73). The current approach of performing all data movements asynchronously (i.e.,

launched with NOWAIT) and following them up with empty TARGET tasks is necessary

to achieve the proper overlap with CCE version 8.5. One might, for example, sim-

ply attempt to update data on the CPU when it is needed with a TARGET UPDATE

FROM construct, devoid of the NOWAIT clause. Currently it appears that with such an

approach, the underlying code for the data movement between the CPU and GPU

cannot be overlapped with computations on the GPU, since pinned memory is not

used; these issues should be cleared up in CCE 8.6 (private communication). After

progressing through the entire cycle of operations detailed in table 4.11, the final

synchronization required for steps 29, 35, and 41 in table 4.11 is accomplished with

TASKWAIT, after which the required derivatives are obtained.

4.4.4 Performance of accelerated DNS code

The performance of the GPU-accelerated DNS code is now reported. Tests are con-

ducted on Titan, a 27 petaflop heterogeneous machine which derives most of its float-

ing point performance from the Nvidia K20 Kepler GPUs attached to each compute

node. When gathering performance data for accelerated codes, a common practice is

to run the same tests with the original unaccelerated code (i.e., the CPU-only code)

in order to assess how well the code was accelerated. Performance can be reported in

terms of the speedup of the accelerated code relative to the original code, although

a drawback of this approach is that the speedup metric is highly dependent on the

particular node configuration, and does not clearly show how well either code uti-

lizes the underlying hardware. If the speedup is, for example, reported relative to

the serial version of the CPU-only code, a much larger speedup is certainly attained

compared to the case that timings are reported using a parallel version of the CPU-

only code which utilizes the full capabilities of the CPU portion of the node. At this

time, low-level performance metrics have not been measured, so the focus will be on
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Figure 4.11: Overall simulation time per step for the GPU-accelerated code as a
function of the number of processing elements for the scalar field communicator. The
symbols indicate which version of the code was used for the timings: for the CPU-
only code, for the GPU code without asynchronous execution, and for the GPU
code with asynchronous execution. Horizontal and sloped lines to mark strong and
weak scaling datasets for the CPU-only code (green dashed lines) and the GPU code
with asynchronous execution (blue dotted lines).

the strong and weak scaling of the accelerated code, and its speedup relative to the

CPU-only code using the best performing (parallel) configurations for both codes for

each problem.

The performance of the original code and the accelerated code on Titan using a

grid ratio Nθ/Nv = 8 for Nθ = 2048, 4096, 8192 problems sizes is presented in graph-

ical and tabular forms in figure 4.11 and table 4.12, respectively. Strong and weak

scaling datasets for the CPU-only code and the accelerated code with asynchronous

capabilities are marked in figure 4.11 with sloped and horizontal lines. Each strong

scaling dataset begins at the minimum number of nodes (each node having 16 PEs)

134



www.manaraa.com

Table 4.12: Overall simulation time per step in seconds, and strong and weak scaling
results for (left table) Nθ = 2048, (middle table) Nθ = 4096, and (right table) Nθ =
8192 problem sizes using grid ratios Nθ/Nv = 8. Each column is for a given number
of processing elements for the scalar field code (PEs, with K ≡ 1024), defined as
the number of MPI processes multiplied by the number of OpenMP threads per MPI
process. Each horizontal block is for a specific version of the code: top block for the
CPU-only code, middle block for GPU code with asynchronous execution off (A-Off),
and bottom block for GPU code with asynchronous execution on (A-On). Strong
scaling data (abbreviated “Str.”) given with respect to the minimum PE count used
for a given problem size, and weak scaling data for each version of the code given
with respect to Nθ = 2048 timings for the same version of the code. For the GPU
codes (middle and bottom blocks), the speedup relative to the CPU code is the ratio
of the CPU to the GPU timings for the same PE count. Symbols correspond to those
used in figure 4.11 for each code tested.

PEs 2K 4K 8K
CPU ( ) 15.3 7.61 3.86
Str. (%) — 100 99.3

A-Off ( ) 6.05 3.42 1.83
Speedup 2.53 2.22 2.11
Str. (%) — 88.5 82.8

A-On ( ) 5.85 3.00 1.56
Speedup 2.62 2.53 2.48
Str. (%) — 97.4 93.9

PEs 16K 32K 64K
CPU ( ) 15.4 8.11 3.94
Str. (%) — 95.0 97.8

Weak (%) 99.5 93.8 97.9
A-Off ( ) 6.45 3.58 2.04
Speedup 2.39 2.27 1.94
Str. (%) — 90.1 79.2

Weak (%) 93.8 95.5 89.8
A-On ( ) 5.98 3.09 2.09
Speedup 2.58 2.62 1.89
Str. (%) — 96.7 71.7

Weak (%) 97.8 97.0 74.7

PEs 128K 256K
CPU ( ) 16.5 8.55
Str. (%) — 96.5

Weak (%) 92.9 89.0
A-Off ( ) 6.90 4.31
Speedup 2.39 1.98
Str. (%) — 80.1

Weak (%) 87.7 79.4
A-On ( ) 6.08 3.56
Speedup 2.71 2.40
Str. (%) — 85.3

Weak (%) 96.2 84.3

that provides enough memory to perform the scalar field computation entirely on the

GPUs. Of particular interest is the weak scaling of this minimum-node configuration

because it is the configuration used for production simulations. For Nθ = 2048 using

2048 PEs, the asynchronous version of the accelerated code achieves a speedup of

approximately 2.6, which significantly increases the amount of science (i.e., the num-

ber of simulation time steps) obtained from a simulation. For the relatively low node

count used for Nθ = 2048, the communication requirements are not so demanding that

enabling the asynchronous capabilities in the CCD subroutine offers significant per-

formance benefits. As the problem is weak-scaled out to Nθ = 4096 and Nθ = 8192,

however, significant performance gains are possible by overlapping communication
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and computation in the CCD subroutine. Specifically, for Nθ = 8192 at 131, 072

PEs, the performance of the accelerated code can be improved from 6.90 sec/step to

6.08 sec/step by enabling asynchronous features, which represents more than a 10%

improvement in absolute performance. The resulting improvement in weak scaling

relative to the Nθ = 2048 data is from 88% (asynchronous execution disabled) to

96% (asynchronous execution enabled). Evidently, maintaining good strong scaling

with the accelerated code on Titan over a wide range of core counts is challenging.

For the main production problem of Nθ = 8192, the asynchronous code only achieves

85% strong scaling when increasing from 131, 072 PEs to 262, 144 PEs (the maximum

number of PEs that can be used on Titan for this problem size). Strong scaling ac-

celerated codes is expected to be a challenge, since only the computational portions

of the code are accelerated, while the communication requirements and subroutines

remain unchanged.

4.5 Summary

This chapter reports on the development and performance characteristics of a dual-

communicator parallel algorithm for the direct numerical simulation (DNS) of turbu-

lent mixing at high Schmidt number (Sc). At high Sc, the passive scalar requires grid

resolution higher than that for the velocity field by a factor
√
Sc. To save compu-

tational resources, the velocity field can be computed on a coarser grid (Brethouwer

et al., 2003; Gotoh et al., 2012) while a finer grid is necessary for the scalar field. The

velocity field is computed according to the Navier-Stokes equations on a periodic do-

main of N3
v grid points using Fourier pseudo-spectral (FPS) methods, while the scalar

field is computed according to an advection-diffusion equation on the same physical

domain using a combined compact finite difference (CCD) scheme on a finer grid of

N3
θ points. Parallel processes (MPI processes) running the code are divided into two

disjoint communicators for the velocity and scalar fields, respectively. Since the scalar
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is dynamically passive the coupling between the two communicators is one-way, and

is realized through the inter-communicator transfer of the velocity field followed by

interpolation onto the finer grid. Extensive benchmarking has been performed over

a wide range of problem sizes using the Cray XE6 partition of Blue Waters at the

University of Illinois, Urbana-Champaign, and the Cray XK7 machine Titan at Oak

Ridge National Laboratory, TN.

An advantage that CCD schemes have over their FPS counterparts is their re-

duced communication requirements, which improves scalability to the large problems

sizes necessary to study turbulent mixing at high Sc (Gotoh et al., 2014). The CCD

scheme computes first and second derivatives of a field to eighth-order accuracy (Ma-

hesh, 1998) through a block tridiagonal system of equations (4.6). As explained by

Nihei & Ishii (2003) and briefly summarized in Appendix D, this linear system can be

solved on a static 3-D domain decomposition without the expensive memory trans-

poses used by FPS schemes. Since the CCD scheme takes a large fraction (60% in

table 4.8) of the overall cost of the simulation it is important to pursue optimization of

the CCD routines rigorously. In addition to using shared-memory programming im-

plemented with OpenMP to reduce the number of MPI processes and thus lower the

volume of ghost-layer communication traffic, non-blocking MPI calls are also used to

overlap communication and computation in all three coordinate directions (§4.2.2 and

table 4.3). While such approaches did improve scalability, the biggest improvement

on Blue Waters came from dedicating certain threads to perform only communica-

tion while others only compute. This thread splitting approach is implemented using

nested OpenMP parallelism and utilizes OpenMP locks for synchronization.

At the largest production problem size of Nθ = 8192 run on 262, 144 processing

elements (PEs) on Blue Waters, dedicating one thread per NUMA domain for com-

munication improves the performance of the CCD routines by 34% compared to the

single threaded implementation using blocking communication. As seen in figure 4.4
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and table 4.5, for this configuration strong scaling with respect to the fewest PEs

tested and weak scaling with respect to 10243 are 90%. It can be seen in figure 4.4

that the best CCD implementation scales well to even Nθ = 16384 on 524, 288 PEs.

The CrayPat performance monitoring utility has been used to measure computational

performance of the CCD routines for problem sizes up to 40963. The results suggest

that the best CCD implementations can reach nearly 6% of theoretical peak FLOP

rate. The CrayPat data also indicate that the memory bandwidth as well as cache

subsystems are utilized effectively.

As analyzed in §4.3, the performance of the combined dual-communicator code

depends on the size of the (disjoint) scalar and velocity communicators, the coupling

between the communicators, and the CCD routines. The overall resource requirement

is driven by the scalar field, and the number of PEs for the velocity field is chosen

in proportion to its problem size, which is a factor (Nθ/Nv)
3 smaller than the scalar

problem. Focusing on high Schmidt number configurations, Nθ/Nv = 8 is used in the

performance evaluation of the dual-communicator code. As illustrated in figure 4.5,

the velocity field is first sent to the root process of the scalar field sub-communicator

in the first coordinate direction with discrete send and receive operations. After

it has arrived, the velocity field is scattered to other processes in the same sub-

communicator. Results in table 4.8 show that this transfer is being handled very

efficiently, taking less than 3% of cost of the DNS at the largest production problem

size. The nature of the one-way coupling between the velocity and scalar fields allows

the transfer to be performed using non-blocking communication, which allows efficient

overlap of this transfer with other operations in the scalar communicator. The timing

data for the DNS code presented in figure 4.8 and table 4.7 show that the dual-

communicator code is achieving good scalability on Blue Waters over a wide range of

problem sizes and PEs of practical interest.

The relatively low communication requirements of the current code also make it a
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prime candidate for acceleration in heterogeneous computing environments. In order

to run on machines like Titan, the 27 petaflop heterogeneous machine with Nvidia

GPU accelerators, the code is ported to run on GPUs using the latest OpenMP 4.5

capabilities of the Cray compiler. Because the computational cost of a simulation

with high grid ratios, e.g., Nθ/Nv = 8, is dominated by the scalar field computation,

these efforts focus solely on accelerating the computation of the scalar field. Memory

movement between the CPUs and GPUs is minimized by transferring the entire mem-

ory space required for the scalar field computation to the GPUs. With this approach,

data movement between the CPUs and GPUs is limited to just the transfer of the

velocity field and the data required for the evaluation of the CCD scheme. Motivated

by the improved scalability found on Blue Waters when communication and compu-

tation were explicitly overlapped in the CCD subroutine, the latest capabilities of

OpenMP 4.5 are used in a version of the CCD subroutine for heterogeneous comput-

ing environments which overlaps communication and computation by allowing the

CPUs and GPUs to operate asynchronously. The routine utilizes the task-oriented

clauses, e.g., DEPEND and NOWAIT, added to the accelerator (TARGET) constructs in

OpenMP 4.5 to allow the CPUs to immediately proceed to a required communication

call after asynchronously launching computational kernels. For a target production

problem of Nθ = 8192 on Titan using 131, 072 PEs (8192 Titan XK7 nodes), absolute

performance is improved by over 10% when using the asynchronous CCD subroutine,

resulting in a weak scaling of 96% relative to Nθ = 2048 timings. The overall speedup

compared to the CPU-only version of the code at this problem size is 2.7.

To summarize, the motivation for this chapter was to develop a new parallel

code capable of efficiently simulating turbulent mixing at high Schmidt number. The

target production problem size is 81923 (more than 0.5 trillion) grid points on large

massively parallel systems such as Blue Waters and Titan. The key strategy is to

exploit opportunities for overlapping between independent operations whenever the
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physics of the passive scalar problem or other computations allow. The codes use

shared-memory programming, in particular OpenMP’s nested parallelism capabilities

to optimize the CCD routines, and a dual-communicator formulation which ultimately

leads to substantial enhancement in performance compared to recent work by Gotoh

et al. (2012). The code was also successfully ported to run in heterogeneous computing

environments using the latest techniques in OpenMP 4.5, resulting in a significant

improvement in absolute performance compared to CPU-only execution.
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CHAPTER V

TURBULENT MIXING AT HIGH SCHMIDT NUMBER

Turbulent mixing of high Schmidt number scalars is relevant to many flows of interest,

including industrial mixing of liquids and the mixing of organic matter and salinity

in the ocean. Conducting DNS of such flows is challenging due to the increased

resolution requirements of the Batchelor scales, which have often limited the study of

very high Schmidt number scalars to low Reynolds numbers (Donzis & Yeung, 2010).

Because of limited data, there are many open questions for high Schmidt number

passive scalars in high Reynolds numbers turbulence (Gotoh & Yeung, 2013). For

example, the shape of the scalar spectrum at these extreme conditions is still an

open question (Warhaft, 2000; Gotoh et al., 2014). Also, the status of local isotropy

and the saturation of small-scale intermittency in the scalar field, while previously

examined at low Reynolds numbers for very high Schmidt numbers (Yeung et al.,

2002, 2004; Donzis & Yeung, 2010), need further examination at higher Reynolds

numbers. With the numerical algorithms developed in Chapter IV and access to

petascale computational resources, a great opportunity is now available to provide

insight into these questions and more for high Schmidt number passive scalars.

This chapter presents a DNS database used to investigate the Schmidt number

dependence of passive scalar statistics in forced Rλ ≈ 140 isotropic turbulence. This

Reynolds number is sufficiently high to support a narrow inertial range in the ve-

locity field (Yeung & Zhou, 1997). A description of the DNS database is provided

in §5.1, and includes information like the resolution of the velocity field and scalar

field for each simulation. In §5.2 results are examined for a single Schmidt num-

ber simulated with multiple grid configurations, to check what impact the numerics

have on the results. Single-point statistics of the scalar field, including moments of
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scalar gradients and PDFs of the scalar gradients and scalar dissipation rate are pre-

sented in §5.3. Two-point statistics of the scalar field are investigated in §5.4 both

in Fourier space with spectra and in physical space with structure functions. Scalar

gradient fluctuations are studied in §5.5. Finally, §5.6 summarizes the results from

this chapter.

5.1 Description of DNS database

To systematically investigate the influence of the Schmidt number on the statistics of

a passive scalar, a DNS database is generated at a fixed Reynolds number spanning a

wide range of Schmidt numbers. While past studies at very high Schmidt number have

been limited to low Reynolds numbers (Donzis et al., 2010), the algorithms developed

in Chapter IV and access to petascale computational resources on Blue Waters and

Titan have enabled simulations of turbulent mixing at high Schmidt numbers with a

sufficiently high Reynolds number to support a narrow inertial range (Yeung & Zhou,

1997). Specifically, isotropic turbulence at Rλ ≈ 140 is maintained in all simulations

with large-scale forcing (Donzis & Yeung, 2010), and scalars with Schmidt numbers

ranging from 4 to 512 achieve stationarity under forcing by a mean scalar gradient in

the x1 direction. Aside from conducting simulations for a given set of flow parameters,

it is also important to ensure that the numerical resolutions employed are sufficiently

high for the statistics of interest (Donzis & Yeung, 2010). To check the robustness of

the results, multiple numerical configurations are used for moderate Sc runs, which is

permissible given their inexpensive computational cost relative to the high Sc runs.

Table 5.1 provides a list of the simulations carried out in this study. All runs

use the code described in Chapter IV, which employs N3
v grid points in the FPS

calculation of the velocity field, and N3
θ grid points for the scalar field computation

using the CCD scheme. The resolution estimates for the velocity and scalar fields

for all runs use the result that a Nv = 256 grid provides an approximate resolution
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Table 5.1: List of simulations in DNS database for turbulent mixing at high Sc. The
nominal resolution for Rλ ≈ 140 isotropic turbulence on a Nv = 256 grid is 1.4, which
is used to provide resolution estimates for all other velocity fields and scalar fields.

Run Sc Nv kmax,vη Nθ kmax,θηB CFL
1 4 512 2.8 1024 2.8 0.8
2 4 512 2.8 2048 5.6 0.8
3 8 256 1.4 1024 2.0 0.8
4 8 512 2.8 1024 2.0 0.8
5 8 512 2.8 1024 2.0 0.4
6 8 512 2.8 2048 4.0 0.8
7 16 256 1.4 1024 1.4 0.8
8 16 256 1.4 2048 2.8 0.8
9 16 512 2.8 1024 1.4 0.8
10 16 512 2.8 2048 2.8 0.8
11 32 512 2.8 2048 2.0 0.8
12 32 512 2.8 2048 2.0 0.4
13 32 1024 5.6 4096 4.0 0.8
14 64 512 2.8 2048 1.4 0.8
15 128 512 2.8 4096 2.0 0.8
16 512 1024 5.6 8192 2.0 0.8

of kmax,vη = 1.4 for Rλ ≈ 140 forced isotropic turbulence. The resolution of the

velocity field on different grids is therefore easily calculated, but to determine the

scalar field resolution, the different grids and the increased resolution requirements

of the Batchelor scale must be taken into account with the relation

kmax,θηB = kmax,vη

(
Nθ

Nv

)
1√
Sc

. (5.1)

The majority of the runs employ good small-scale resolution of the scalar field, e.g.,

kmax,θηB = 2.0, and some runs achieve very high resolution with kmax,θηB = 4 or

greater. Time stepping in the DNS code uses the classical RK4 scheme for both the

velocity and scalar fields, with the time step controlled by the Courant-Friedrichs-

Lewy (CFL) criterion based on the finer grid spacing used for the scalar field. It

was found through experimentation that with RK4 a CFL of 0.8 provides stable
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and accurate time integration. Overall, RK4 greatly increases the computational

throughput of the simulations compared to RK2, which is limited to CFL numbers

close to 0.1 for high Schmidt numbers (determined from numerical tests). To check

the influence of the CFL number, a few simulations (Runs 5 and 12) with a reduced

CFL number of 0.4 have been included.

5.2 Numerical resolution effects

Before investigating the Schmidt number dependence of passive scalar statistics, the

robustness of the results is assessed from a purely numerical perspective. In this

section various statistics are compared from Runs 7–10, which all simulate a Sc = 16

scalar, but with differing grid resolutions. Here the focus is solely on the numerical

results, with descriptions of the statistics chosen, and their physical significance,

deferred to later sections of this chapter. As can be seen in table 5.1, Runs 7 and 8

use the same moderate resolution for the velocity field (kmax,vη = 1.4), but differ in

their resolution of the passive scalar, with Run 7 maintaining kmax,θηB = 1.4 while

Run 8 has a higher resolution of kmax,θηB = 2.8. Runs 9 and 10 then increase the

resolution of the velocity field by a factor of two, and use the same grids for the

passive scalar as Runs 7 and 8, respectively. The configurations tested span a range

of grid ratios Nθ/Nv from 2 to 8, which is useful to assess the impact that the tricubic

interpolation scheme has on the results.

Figure 5.1 begins with the time evolution of certain scalar statistics from the four

Sc = 16 simulations. In frame (a), the scalar variance and mean scalar dissipation

rate are seen to remain indistinguishable for all simulations until t/τ ≈ 3. After

this time, simulations with different values of Nv show different evolutions for these

statistics, and close observation reveals that the influence of the scalar grid for a

given velocity grid do not become apparent until t/τ ≈ 7. Frame (b) shows the

time evolution of the scalar derivative skewness in the direction of the mean scalar
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Figure 5.1: Development of (a) the scalar variance and dissipation rate and (b) the
skewness of the fluctuating scalar gradient parallel to the mean scalar gradient for
the Sc = 16 simulations. In (a), solid lines for scalar variance and dashed lines for
scalar dissipation rate, with a single color and symbol shape corresponding to a given
grid configuration: and for Run 7, and for Run 8, and for Run 9, and
and for Run 10. In (b), colors and symbol shapes match those in (a) for the scalar
dissipation rate.
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Figure 5.2: Time-averaged 3-D scalar spectrum under Batchelor scaling for the Sc =
16 simulations. Solid (thickest) green curve for Run 7, dashed red curve for Run 8,
dashed cyan curve for Run 9, and solid (thinnest) black curve for Run 10. Cutoff
wavenumber for Runs 7 and 9 (those with Nθ = 1024) marked with vertical line.
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gradient (a small-scale statistic). After an initial development period, the skewness

also hovers around a nominal value in the stationary state. Close observation reveals

that the runs with higher resolution scalar grids (Run 8 in black, and Run 10 in

red) experience larger fluctuations in the skewness compared to the lower resolution

cases, showing the expected result that small-scale statistics are sensitive to grid

resolution. One should not, of course, expect the instantaneous values for the statistics

shown in figure 5.1 to remain the same for all simulations, given the chaotic nature

of turbulence (Pope, 2000); however, it is reasonable to expect that as long as the

resolutions employed are high enough for a quantity of interest, statistical averages

in the stationary state should be in good agreement across multiple configurations.

To illustrate this, figure 5.2 presents the time-averaged 3-D scalar spectrum for Runs

7–10 under Batchelor scaling (the details of which will be discussed later). Except

for very slight variations at the largest scales (lowest wavenumbers), all spectra agree

excellently. For the higher resolution grids (Runs 8 and 10, with Nθ = 2048), whose

resolution extends beyond that of the coarser grids, the spectra agree perfectly far into

the dissipation range. The excellent agreement of the scalar spectrum across many

numerical configurations (Nθ/Nv ranging from 2 to 8) suggests that the numerical

resolutions and scheme employed are well suited to investigate the scaling of the

scalar spectrum at high Sc.

As alluded to earlier when discussing the scalar gradient skewness, small-scale

statistics in DNS are sensitive to the numerical resolution employed. In particular,

intermittent quantities such as the scalar dissipation rate (Sreenivasan & Antonia,

1997) require high resolution to calculate and sample properly (Donzis & Yeung,

2010). To investigate the impact of the numerical configurations on the sampling of

small-scale statistics, figure 5.3 shows for all Sc = 16 simulations the time-averaged

PDFs of normalized scalar gradients parallel and perpendicular to the mean scalar

gradient in frames (a) and (b), respectively, and the PDF of the normalized scalar dis-
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Figure 5.3: Time-averaged PDFs of (a) normalized fluctuating scalar gradients in the
direction of the mean scalar gradient, (b) average of the normalized fluctuating scalar
gradients in directions transverse to the mean scalar gradient, and (c) normalized
scalar dissipation rate. Data for the Sc = 16 simulations, with blue for Run 7, black
for Run 8, green for Run 9, and red for Run 10. Upper curves in each frame contain
results from the higher resolution scalar grids (Runs 8 and 10).

sipation rate in frame (c). While the PDFs are sensitive to the scalar grid resolution

(expected), they exhibit no discernible dependence on the velocity field resolution.

This provides further support that the velocity field resolutions used in the current

work are more than adequate for the statistics of interest. Because of the apparent

sensitivity of such statistics to the scalar grid resolution, in later sections when ex-

amining the Schmidt number dependence of various quantities, results will mainly be

compared for fixed small-scale resolutions, i.e., fixed values of kmax,θηB.

5.3 Single-point statistics

To begin analyzing the Schmidt number dependence of turbulent mixing, table 5.2

presents some single-point statistics obtained from all runs. In each sub-table of ta-

ble 5.2, the second block contains the time-averaged turbulence kinetic energy and

energy dissipation rate, along with the amount of time the simulation was run in the

stationary state T , normalized by the large-eddy turnover time τ = `/u′. Most sim-

ulations using Nθ = 2048 or fewer grid points for the scalar field were run for much
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Table 5.2: Simulation parameters and time-averaged statistics, split over two tables
for (upper) Runs 1–8 and (lower) Runs 9–16. In each table, numerical configuration
in the first block. Second block includes turbulence kinetic energy and energy dissipa-
tion rate, and the amount of time the simulation was run in the stationary state, with
τ = `/u′ ≈ 0.8. Third block gives time-averaged statistics for the scalar fields, in-
cluding the mechanical-to-scalar timescale ratio rθ and the velocity-scalar correlation
coefficient ρuθ. Last block for scalar derivative statistics, with the parallel subscript
indicating the derivative is in the direction of the mean scalar gradient, the perpen-
dicular subscript indicating an average over statistics in the transverse directions, and
σ for standard deviation and µn for normalized central moment of order n.

Run 1 2 3 4 5 6 7 8
Nv 512 512 256 512 512 512 256 256
Nθ 1024 2048 1024 1024 1024 2048 1024 2048
CFL 0.8 0.8 0.8 0.8 0.4 0.8 0.8 0.8
Sc 4 4 8 8 8 8 16 16
K 3.17 3.21 3.18 3.19 3.17 3.15 3.18 3.17
〈ε〉 1.32 1.36 1.34 1.34 1.32 1.30 1.34 1.32
T/τ 105 26.6 95 85.6 66.3 45.3 97.9 43.9
〈θ2〉 3.62 3.69 4.03 3.66 3.36 3.67 4.03 4.15
P 2.91 2.97 2.99 2.78 2.55 2.72 2.81 2.90
〈χ〉 2.91 2.98 3.01 2.80 2.57 2.76 2.83 2.90
rθ 1.95 1.92 1.80 1.84 1.88 1.85 1.70 1.72
ρuθ -0.52 -0.52 -0.50 -0.50 -0.49 -0.49 -0.48 -0.48
σ2
‖/σ

2
⊥ 1.03 1.04 1.02 1.03 1.03 1.02 1.02 1.01

µ3‖ 1.09 1.08 0.844 0.843 0.860 0.828 0.592 0.634
µ4‖ 19.1 19.1 18.8 18.4 18.2 18.6 16.9 18.5
µ4⊥ 17.3 17.2 17.3 16.9 16.8 17.4 16.0 17.4

Run 9 10 11 12 13 14 15 16
Nv 512 512 512 512 1024 512 512 1024
Nθ 1024 2048 2048 2048 4096 2048 4096 8192
CFL 0.8 0.8 0.8 0.4 0.8 0.8 0.8 0.8
Sc 16 16 32 32 32 64 128 512
K 3.20 3.15 3.16 3.14 3.18 3.18 3.13 3.21
〈ε〉 1.36 1.30 1.31 1.29 1.34 1.33 1.28 1.35
T/τ 84.3 56.8 43.9 18.6 10.6 53.4 22.6 7.95
〈θ2〉 3.66 4.65 4.61 3.83 4.20 5.34 5.90 5.45
P 2.67 3.18 3.00 2.50 2.71 3.21 3.23 2.81
〈χ〉 2.62 3.14 2.97 2.46 2.80 3.20 3.32 2.75
rθ 1.71 1.66 1.58 1.58 1.59 1.45 1.40 1.21
ρuθ -0.48 -0.49 -0.47 -0.45 -0.45 -0.46 -0.45 -0.42
σ2
‖/σ

2
⊥ 1.02 1.01 1.01 1.02 1.02 1.00 0.99 1.01

µ3‖ 0.602 0.638 0.470 0.483 0.492 0.310 0.244 0.134
µ4‖ 16.9 18.8 18.2 18.1 18.9 16.6 17.9 17.5
µ4⊥ 16.0 17.6 17.3 17.3 18.0 16.1 17.5 17.2
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longer than is typically required for statistical convergence (e.g. see Donzis & Yeung

(2010), where simulations are run for T/τ ≈ 10), but are inexpensive enough that

longer run times are permissible. The third block reports the time-average of statis-

tics such as the scalar variance and production rate. While dimensional quantities

such as the scalar variance show large fluctuations in the stationary state (e.g., see

figure 5.1), non-dimensional parameters like the mechanical-to-scalar timescale ratio

rθ = (K/〈ε〉)/(〈θ2〉/〈χ〉) show significantly reduced variation, and better agreement

after averaging for a given set of flow parameters, i.e., at a fixed Schmidt number.

Consistent with previous studies (Yeung et al., 2002), both rθ and the velocity-scalar

correlation coefficient ρuθ decrease with increasing Sc, indicating the importance of

incorporating Schmidt number dependencies into turbulence models.

The last block of the sub-tables reports statistics of scalar gradients parallel and

perpendicular to the mean scalar gradient. Such derivative statistics characterize

the small scales, and are useful when verifying the isotropy (or lack thereof) in the

small scales of the scalar field. Beginning with Kolmogorov (1941), a driving force

in turbulence theory has been the hypothesis that at high Reynolds numbers, the

smallest scales in the flow are locally isotropic, and are therefore universal. There is

a wide body of research supporting Kolmogorov’s original hypotheses at the second

and third order for the velocity field (Sreenivasan, 1995; Yeung & Zhou, 1997), but

extensions of the hypotheses to passive scalars (Obukhov, 1949; Corrsin, 1951) have

suffered from results contradicting the theory (Sreenivasan, 1991). If it were true,

local isotropy for the passive scalar field would imply that even-order moments of

scalar gradients parallel and perpendicular to the mean gradient would be equal,

and that odd-order moments in the direction of the mean gradient would vanish.

Table 5.2 shows that derivative variance ratios are mostly above one, the skewness of

the gradients parallel to the mean gradient is non-zero, and that the flatness factors of

parallel and perpendicular gradients are not equal. While statistics are not in support
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Figure 5.4: Schmidt number dependence of (a) the skewness of the parallel scalar
gradients, (b) the PDF of the parallel scalar gradients, and (c) an asymmetry indicator
for the PDF. In (a), non-star symbols for different grid resolutions in the new DNS
database: for kmax,θηB = 1.4 (Runs 9 and 14), for kmax,θηB = 2.0 (Runs 4, 11, 15
and 16), for kmax,θηB = 2.8 (Runs 1 and 10), and for high-resolution cases (Runs
2, 6, and 13). Magenta stars ( ) for Rλ ≈ 140 data (at multiple resolutions) reported
by Donzis & Yeung (2010). In left frame, sloped line proportional to Sc−0.45. In (b)
and (c), cyan curve for Sc = 4 (Run 2), blue curve for Sc = 8 (Run 5), red curve for
Sc = 32 (Run 12), green curve for Sc = 128 (Run 15), and black curve for Sc = 512
(Run 16). In (b), reference Gaussian PDF shown with curved dotted line.

of isotropy, there is a trend towards local isotropy with increasing Schmidt number,

as has been previously reported at lower Reynolds numbers (Yeung et al., 2002).

It is useful to determine the rate by which the scalar field becomes more isotropic

as the Schmidt number is increased. For this consider the skewness of the scalar

gradients in the direction of the mean scalar gradient, which would be zero if local

isotropy were to hold. Figure 5.4 shows the Schmidt number dependence of the

skewness in frame (a). Results from Donzis & Yeung (2010) are also included, where

Fourier pseudo-spectral methods were used for both the velocity and scalar fields for

Schmidt numbers up to 64 in Rλ ≈ 140 forced isotropic turbulence. Both datasets

are suggestive of an approach toward local isotropy with a power-law dependence

on Sc of the form Sc−α with α ≈ 0.45. Mathematically, the skewness is related

to the third moment of the scalar gradient PDF, which is shown in frame (b) for

multiple simulations having nominally the same scalar field resolution. The positive
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skewness is a result of the asymmetry of the PDF, which shows large positive scalar

gradients being more likely than large negative gradients. The asymmetry in the PDF

is perhaps not as evident as it is for lower Schmidt numbers (e.g., see data in Yeung

et al. (2002)), so frame (c) includes an asymmetry indicator of the form (Schumacher

& Sreenivasan, 2003)

π(z) =
p(z)− p(−z)

p(z) + p(−z)
, (5.2)

where p(z) denotes the value of the PDF for a particular value of z = ∇‖θ/
〈
(∇‖θ)2

〉1/2
.

The indicator function clearly shows that as Sc increases, the asymmetry in tails of

the PDF weakens, suggesting that passive scalars become more isotropic at higher Sc.

The anisotropy in the small scales of the scalar field is the direct result of their

apparent coupling to the large-scale, anisotropic mean scalar field. This coupling be-

tween the large and small scales arises when turbulent advection in the direction of

the imposed mean scalar gradient brings together low and high values of the scalar

(i.e., warm and cool fluid, in the case of temperature fluctuations), which results in

the formation of steep scalar gradients in the direction of the mean gradient (Warhaft,

2000). The scalar fluctuations have a characteristic ramp-cliff structure (Sreenivasan

et al., 1979; Holzer & Siggia, 1994), where ramps correspond to regions of relatively

constant values of the total scalar, and cliffs correspond to the steep gradients. To

visualize the scalar structure, and to compare lower Schmidt number scalars with

higher Schmidt number scalars, figure 5.5 shows surface plots of the total instanta-

neous scalar value

Θ =
∂〈Θ〉
∂xi

xi + θ (5.3)

for Sc = 4 and Sc = 32. Scientific visualization in the manner presented in figure 5.5

is not very precise, but although the slices presented are taken randomly from the

available data, they possess many of the expected features for passive scalars given the

above discussions. The top image, corresponding to Sc = 4, is perhaps easier to look
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Figure 5.5: Surface plot of total scalar (mean plus fluctuation) for arbitrary slices
taken from (top) a Sc = 4 simulation (Run 2) and (bottom) a Sc = 32 simulation
(Run 11). Low (cooler) values for the scalar shown in blue, and higher (warmer)
values shown in red. Direction of the mean gradient shown next to each rendering.
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Figure 5.6: Plots of statistics focusing on scalar field intermittency. In (a), flatness
factors of scalar gradients (closed symbols) parallel and (open symbols) perpendicular
to the mean scalar gradient, along with data for µ4‖ from Donzis & Yeung (2010).
Symbols in (a) are the same as those in frame (a) of figure 5.4 for the parallel gradients,
and matching open symbols are for perpendicular gradients. In (b), PDFs of (solid
curves) normalized scalar dissipation rate and (black dashed-dotted curve) normalized
energy dissipation rate. For scalar dissipation rate, cyan curve for Sc = 4 (Run 2),
blue curve for Sc = 8 (Run 5), red curve for Sc = 32 (Run 12), green curve for
Sc = 128 (Run 15), and black curve for Sc = 512 (Run 16). Also in (b) are PDFs of
normalized scalar dissipation rate from Donzis & Yeung (2010) in the form of dashed
magenta curves, with increasing tails for Sc = 1/8, Sc = 1, and Sc = 4.

at, and in it there are clear signatures of the ramp-cliff structure in the direction of the

mean scalar gradient. There are vast regions where the total scalar is relatively well-

mixed (i.e., taking nearly the same value), with fairly steep gradients in the direction

of the mean gradient separating the regions. The lower image, corresponding to

Sc = 32 is more challenging to understand because the reduced molecular diffusivity

gives rise to a broader range of scales in the scalar field. Scalar gradients must take

even larger values in order to maintain the scalar dissipation rate (Donzis et al., 2005)

after the diffusivity is reduced, which is visually evident in the rapid changes in the

scalar over short length scales.

In addition to being anisotropic at the small scales, another characteristic of pas-

sive scalars is that they are generally more intermittent than the velocity field (Sreeni-

vasan & Antonia, 1997). Small-scale intermittency in the passive scalar field can be
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examined through statistics such as the flatness factors of the scalar gradients and

the scalar dissipation rate (not simply its mean value). It has previously been found

that for a fixed Reynolds number, intermittency saturates with increasing Schmidt

number (Yeung et al., 2002). Some previous work even reached Sc = O(1000) (Ye-

ung et al., 2004), but at severely restricted Reynolds numbers (e.g., Rλ ≈ 8). The

new DNS data is used to further investigate the saturation of intermittency in the

scalar field, beginning in figure 5.6 with frame (a) for the Schmidt number depen-

dence of the flatness factors of the scalar gradients parallel and perpendicular to the

mean gradient (using data from table 5.2). While the data might be suggestive of

saturation, it appears that higher resolution is needed to make a more definitive con-

clusion. Focusing on the two simulations at Sc = 32 (which achieved kmax,θηB = 2

and 4, respectively) there is an approximate 5% increase in the flatness factors at the

higher resolution. The trend that the flatness factors apparently decrease at higher

Sc is likely not robust, and the picture might change with higher resolution datasets.

It would be worthwhile to invest in higher resolution simulations at Sc = 64 and

Sc = 128 (the latter requiring 81923 for a higher resolution run) to clear this up.

Continuing, the PDF of the normalized scalar dissipation rate is presented in

frame (b) of figure 5.6. Data from the new DNS database is shown for configurations

with nominally the same small-scale resolution, alongside high-resolution results from

Donzis & Yeung (2010) for comparison purposes (their simulations being for Sc =

1/8, 1 and 4). Also included is the PDF of the normalized energy dissipation rate.

It is clear that the scalar field is much more intermittent than the velocity field,

e.g., scalar dissipation events that are 200 times the mean value are approximately

two orders of magnitude more likely for the Sc = 1/8 scalar compared to the same

events for the energy dissipation rate. Intermittency indeed increases with Sc, but

beyond Sc = 1 changes in the PDF are minimal, and the larger variations in the

extreme tails of the PDFs are likely due to limited sampling. The robust shape of the
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PDFs with increasing Schmidt number is also suggestive of the potential saturation

of intermittency in the scalar field.

5.4 Two-point statistics

Moving beyond single-point statistics, there are many two-point statistics containing

information on the structure of the scalar field that are of fundamental interest. Two-

point statistics are defined in physical space, the simplest example of which is perhaps

the two-point single-time correlation of the scalar fluctuations

Qθ(r) = 〈θ(x)θ(x + r)〉 , (5.4)

where r is the separation vector, and in homogeneous turbulence the statistic is

independent of x. In homogeneous turbulence it is common to take the Fourier

transform of statistics like (5.4) and study their corresponding spectra. The analysis

in this section begins with the spectral view, and a focus on the 3-D scalar spectrum

Eθ(k), which is related to the two-point correlation, and whose integral gives the

scalar variance:

〈θ2〉 =

∫ ∞
0

Eθ(k) dk . (5.5)

The question that arises is: what form (shape) does the scalar spectrum take, and

what is its dependence on the Reynolds number and Schmidt number?

The first extensions of Kolmogorov’s theory for the velocity field to passive scalars

were made by Obukhov (1949) and Corrsin (1951) and made quantitative predictions

for the shape of the scalar spectrum. Dimensional reasoning in the so-called inertial-

convective range — a range of scales which are sufficiently small compared to the

large-scale motions, and sufficiently large such that dissipation of both the kinetic
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energy and scalar variance is negligible — provides the result

Eθ(k) = COC〈χ〉〈ε〉−1/3k−5/3 , (5.6)

where COC is the Obukhov-Corrsin constant for the 3-D spectrum. Obukhov-Corrsin

scaling has been observed in a number of high Reynolds number experimental (Sreeni-

vasan, 1996) and numerical (Yeung & Donzis, 2005) studies, with the Obukhov-

Corrsin constant taking a value of approximately 0.4 for the 1-D spectra, correspond-

ing to 0.67 for the 3-D spectra assuming the spectra can be related through local

isotropy relations. While the current simulations are at a sufficiently high Reynolds

number for a narrow inertial range to develop in the velocity field (Rλ ≈ 140), they

fall short of what would required for a clearly developed k−5/3 scaling range (e.g.,

see the wide scaling range attained in the Rλ ≈ 700 simulations of Yeung & Donzis

(2005)). Because of this, attention is focused on the different scaling behavior that

develops in the scalar spectrum as the Schmidt number is increased.

Batchelor (1959) extended the theory of passive scalars to include scalars with low

molecular diffusivity. As mentioned previously, when the molecular diffusivity is low

(corresponding to a high Schmidt number), the range of scales in the scalar field is

broader than that of the velocity field. Specifically, the so-called viscous-convective

range develops, which is a range of scales smaller than the Kolmogorov scale of the

velocity field, but larger than the Batchelor scale of the scalar field. Assuming that

the relevant timescale for mixing in the viscous-convective range is the Kolmogorov

timescale τη = (ν/〈ε〉)1/2, dimensional reasoning gives the Batchelor spectrum

Eθ(k) = CB〈χ〉(ν/〈ε〉)1/2k−1 , (5.7)

where CB is the Batchelor constant. While the spectrum given by (5.7) is for the

viscous-convective range of wavenumbers (1/η � k � 1/ηB), Batchelor’s theory
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predicts more rapid decay in the viscous-diffusive range (k � 1/ηB) with the form

Eθ(k) = CB〈χ〉(ν/〈ε〉)1/2k−1 exp(−CB(kηB)2) . (5.8)

Batchelor’s theory does not take into account potential temporal variations in the

strain rates affecting the scalar field; later Kraichnan (1974) developed a theory as-

suming very rapid fluctuations in the strain rates, and arrived at the result

Eθ(k) = CB〈χ〉(ν/〈ε〉)1/2k−1(1 + (6CB)1/2kηB) exp(−(6CB)1/2kηB) , (5.9)

which also predicts k−1 scaling in the viscous-convective range, but less rapid decay

in the far diffusive range compared to Batchelor’s result. It is important to note

that k−1 scaling in the viscous-convective range is very robust, as it is predicted by

both theories. It is therefore unfortunate that experimental support for such k−1

scaling is elusive, or sometimes negative (Miller & Dimotakis, 1996; Warhaft, 2000).

Simulations have, on the other hand, for some time shown increasing support for

Batchelor scaling at high Schmidt number (Donzis et al., 2010).

Figure 5.7 presents the time-averaged spectra obtained from the DNS database.

In frame (a), the raw 3-D spectra show an increasing trend towards Batchelor scal-

ing with increasing Schmidt number. To investigate this more rigorously, frame (b)

shows the same spectra under Batchelor scaling, and includes Kraichnan’s result for

the spectrum assuming a Batchelor constant CB = 5.7 (Gotoh et al., 2014). If Batch-

elor scaling were clearly observed, a plateau at the value of the Batchelor constant

would emerge in the spectrum at higher Schmidt numbers. For the highest Schmidt

number of 512, there might be an emergence of a brief scaling range, but higher

Schmidt numbers yet are required to draw definitive conclusions. It seems clear,

however, that if such a scaling range were to emerge at higher Schmidt numbers,

the resulting Batchelor constant would be higher than that observed by Gotoh et al.
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Figure 5.7: Time-averaged 3-D scalar spectrum obtained from DNS for multiple
Schmidt numbers. In (a), raw 3-D spectra with arrow in the direction of increasing
Sc; sloped dotted line proportional to k−1. In (b), spectra presented under Batchelor
scaling, with dotted black line using the Kraichnan (1974) result with a Batchelor
constant of 5.7 (Gotoh et al., 2014). The inset in (b) presents the same spectra in
linear-log coordinates. In all plots, different colors for different Schmidt numbers:
purple for Sc = 4, red for Sc = 8, blue for Sc = 16, green for Sc = 32, cyan for
Sc = 64, magenta for Sc = 128, and black for Sc = 512.

(2014), who simulated scalars with Schmidt numbers up to 1000 in lower Reynolds

number turbulence (Rλ ≈ 40). The inset figure in frame (b) shows the same spectra

in linear-log coordinates, which is useful to assess the functional form of the spectrum

in the far diffusive range. Clearly, the DNS data show an exponential falloff at high

wavenumbers, which is in agreement with Kraichnan’s prediction for the scalar spec-

trum. Given that the somewhat high resolution employed for the Sc = 512 simulation

might not be required to observe Batchelor scaling (e.g., see the agreement between

the spectra for simulations at modest and high resolutions in figure 5.2), the simula-

tion could potentially be continued with a reduced molecular diffusivity (perhaps to

achieve Sc = 1024) to further explore Batchelor scaling.

Returning to the physical space, the exact relation derived by Yaglom (1949)

for the mixed velocity-scalar structure function in the inertial-convective range is a
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Figure 5.8: Mixed velocity-scalar structure function with scaling according to Ya-
glom’s relation. Solid curves are from the new DNS database, with the same colors
corresponding to the same Schmidt numbers detailed in the caption of figure 5.7.
Dashed curves from figure 10 of Yeung et al. (2002), for Schmidt numbers 8, 16, 32,
and 64 in Rλ ≈ 38 forced isotropic turbulence. Horizontal dashed line at 2/3, and
sloped dotted line proportional to r2. Arrow drawn in direction of increasing Schmidt
number for both (independent) datasets.

fundamental scaling result for the passive scalar field. For two points separated by a

distance r, Yaglom’s relation reads

〈∆ru(∆rθ)
2〉 = −2

3
〈χ〉r , (5.10)

where ∆ru = u(x + r) − u(x) is the velocity increment, and similarly ∆rθ is the

scalar increment. This relation also holds in the viscous-convective range for high

Schmidt number scalars (Yeung et al., 2002; Gotoh & Yeung, 2013). While (5.10)

shows directional dependencies in numerical simulations using mean-gradient forcing

(Yeung et al., 2002), theoretical arguments suggest that with direction averaging

(strictly speaking, spherical averages) Yaglom’s result still holds (Gotoh & Yeung,

2013). The results have therefore been directionally averaged, as is customary in

DNS (Yeung & Donzis, 2005), to report the mixed velocity-scalar structure function

in figure 5.8 with scaling according to Yaglom’s relation. Figure 5.8 also includes data
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Figure 5.9: Structure function (a) skewness with separations in the mean gradient
direction, (b) flatness with separations in the mean gradient direction, and (c) flatness
with separations perpendicular to the mean gradient direction. Curve colors match
description in caption of figure 5.7, with arrows in the directions of increasing Sc.

for Sc = 8, 16, 32, and 64 scalars in Rλ ≈ 38 isotropic turbulence from Yeung et al.

(2002). For small separations, a Taylor series expansion of the increments suggests

that the normalized quantity should grow in proportion to r2. The sloped dashed line

is formed using a value of −0.5 for the mixed velocity-scalar skewness (Yeung et al.,

2002), and all data collapses very well (as expected) for small separations. As the

Schmidt number increases, a clear plateau emerges at intermediate separations, with

a peak value very close to Yaglom’s theoretical result.

Structure functions of the scalar field alone are useful to assess isotropy and in-

termittency as a function of scale size. Consider the skewness structure function

µ3‖(r) =

〈(
∆‖θ(r)

)3
〉

〈(
∆‖θ(r)

)2
〉3/2

, (5.11)

where this time the separations ∆‖θ(r) are taken over a distance r in the direction of

the imposed mean gradient. If the scalar field were isotropic at all scales, this quantity

would be zero for all separations. Figure 5.9 shows the skewness structure function

in frame (a), which is positive over all separations, similar to previous experimental
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(Mydlarski & Warhaft, 1998) and numerical (Yeung et al., 2002) work. Consistent

with the approach toward local isotropy reported for the derivative skewness, there is

a general approach toward isotropy over a wide range of scales as the Schmidt number

is increased. Unlike previous work at lower Reynolds numbers and Schmidt numbers

(Yeung et al., 2002), the skewness structure function develops a local minimum in

the range of 20–40 Batchelor scales. Further work is required to understand why the

skewness then increases for larger separations; perhaps the behavior can be tied to

the large-scale ramp-cliff structures that are present in the scalar field. Shown in

frames (b) and (c) of figure 5.9 are the structure function flatness factors defined in

directions parallel and perpendicular to the mean scalar gradient, respectively. As

discussed by Warhaft (2000), classical Kolmogorov-Obukhov-Corrsin scaling predicts

a constant value for these flatness factors as a function of r, which is clearly violated

(see Yeung et al. (2002) for similar results). The Schmidt number dependence of the

flatness factors is very weak, which again supports the hypothesis that scalar field

intermittency saturates as the Schmidt number is increased.

5.5 Statistics of scalar gradients

Ultimately, passive scalar mixing is controlled by molecular diffusion at the finest

scales present in the scalar field. Remarkably, the mean scalar dissipation rate

〈χ〉 = 2D

〈
∂θ

∂xi

∂θ

∂xi

〉
(5.12)

actually becomes independent of the molecular diffusivity at sufficiently high Reynolds

numbers and Schmidt numbers (Donzis et al., 2005; Shraiman & Siggia, 2000). When

considering two scalars with different Schmidt numbers, it is clear that in order to

maintain the same mean scalar dissipation rate the statistics of their respective scalar

gradients must differ. It is therefore important to study the statistics of scalar gradi-
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ents, and to understand the physical mechanisms behind their production and sub-

sequent amplification to the required levels dictated by the scalar dissipation rate.

The starting point for the statistical analysis of scalar gradients is the evolution

equation of the scalar gradient itself, obtained by taking the gradient of (4.4) to give

∂θi
∂t

+ uj
∂θi
∂xj

= −θjsji − 〈Θj〉sji −
1

2
εijkθjωk −

1

2
εijk〈Θj〉ωk +D

∂2θi
∂xj∂xj

, (5.13)

where θi ≡ ∂θ/∂xi, 〈Θi〉 ≡ ∂〈Θ〉/∂xi, sij is the fluctuating strain rate, ωi is the

vorticity, and εijk is the permutation symbol. [For a detailed summary of many

evolution equations relevant to the passive scalar gradients, please consult Brethouwer

et al. (2003).] The equation for the scalar gradients variances is readily derived from

(5.13), and is given by

∂〈θiθi〉
∂t

+
∂〈ujθiθi〉
∂xj

= −2〈θiθjsji〉 − 2〈Θj〉〈θisji〉−

εijk〈θiθjωk〉 − εijk〈Θj〉〈θiωk〉 − 2D

〈
∂θi
∂xj

∂θi
∂xj

〉
,

(5.14)

where the second term on the left-hand side is zero in homogeneous turbulence. Of

prime interest in (5.14) is the first term on the right-hand side, representing the non-

linear amplification of the scalar gradients by the fluctuating strain rate. This term

has received considerable attention in the literature (Vedula et al., 2001; Brethouwer

et al., 2003), and is most readily studied in the principal axes of the strain rate tensor.

In this coordinate system, the strain rate tensor takes a diagonal form, and the strain

is either extensional or compressive in each direction. The principal strain rates are

ordered α ≥ β ≥ γ, where α + β + γ = 0 because of incompressibility, and α ≥ 0

and γ ≤ 0. The intermediate eigenvalue is known to be mostly positive, and its PDF

obtained from the current simulations (not shown) matches those previously reported

well (Vedula et al., 2001).

Of primary interest is the alignment of the scalar gradients with the principal
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Figure 5.10: PDFs of direction cosines between scalar gradients and principal axes of
the strain rate tensor. Starting from the left side of the figure, lower (blue) curves for
most compressive direction (eγ), middle (black) curves for most extensional direction
(eα), and upper (red) curves intermediate direction (eβ). Schmidt number increasing
in the directions of the arrows, from Sc = 4 to Sc = 512.

Table 5.3: Alignment of scalar gradients with principal strain directions (eα most
extensional, eβ intermediate, eγ most compressive) for various Schmidt numbers.

Run Sc Gα Gβ Gγ

1 4 0.1854 0.1273 0.6872
5 8 0.1864 0.1292 0.6843
12 32 0.1889 0.1311 0.6800
15 128 0.1935 0.1360 0.6705
16 512 0.1915 0.1326 0.6760

strain axes, as sustained alignment with the most compressive direction leads to rapid

amplification of the scalar gradients. It is a matter of post-processing to calculate the

principal strain directions, and to calculate the alignment of the scalar gradients with

the local eigenframe. Figure 5.10 presents the direction cosines for different Schmidt

numbers, and the data bears strong resemblance to that reported by Vedula et al.

(2001). Specifically, the Schmidt number dependence is very weak (for a fixed Rλ),

and the scalar gradient alignment with the most compressive eigendirection is strong.
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Following Vedula et al. (2001), measures of the alignment of the form

Gk =
〈(∇θ · ek)2〉
〈|∇θ|2〉

(5.15)

are calculated, where ek is a given eigendirection. The results are presented in ta-

ble 5.3, where it is evident that the scalar gradients are preferentially aligned with eγ.

However, the alignment appears to weaken slightly as the Schmidt number is in-

creased. Vedula et al. (2001) reported an increasing alignment with the most com-

pressive eigendirection for Schmidt numbers increasing to Sc = 1 from below. That,

combined with the result in table 5.3 suggests that the alignment with the most

compressive eigendirection is maximal around Sc = 1.

Thus far the analysis of scalar gradients has taken place in real (physical) space.

There is also much that can be learned about the evolution of scalar gradients in

Fourier space, where there is a notion of scale size. The dynamical equation for the

scalar gradients in Fourier space is obtained by taking the Fourier transform of (5.13):

dθ̂i(k)

dt
= −Ĝi(k)− θ̂jsji(k)− 〈Θj〉ŝji(k)−

1

2
εijkθ̂jωk(k)− 1

2
εijk〈Θj〉ω̂k(k)−Dk2θ̂i(k) ,

(5.16)

where the advection term is Ĝi(k) = ikjûjθi(k). The scalar gradient spectral covari-

ance is then defined to be

Eθ,ij(k) = 〈θ̂∗i (k)θ̂j(k)〉 , (5.17)

and its evolution equation is derived using (5.16). The result is

dEθ,ij(k)

dt
= Tθ,ij(k) + sθ,ij(k) + s〈Θ〉,ij(k) + ωθ,ij(k) + ω〈Θ〉,ij(k)−Dθ,ij(k) , (5.18)
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where the various terms are

Tθ,ij(k) = −〈θ̂∗i (k)Ĝj(k)〉 − 〈θ̂∗j (k)Ĝi(k)〉∗ , (5.19)

sθ,ij(k) = −〈θ̂∗i (k)θ̂kskj(k)〉 − 〈θ̂∗j (k)θ̂kski(k)〉∗ , (5.20)

s〈Θ〉,ij(k) = −〈Θk〉〈θ̂∗i (k)ŝkj(k)〉 − 〈Θk〉〈θ̂∗j (k)ŝki(k)〉∗ , (5.21)

ωθ,ij(k) = −1

2
εjkl〈θ̂∗i (k)θ̂kωl(k)〉 − 1

2
εikl〈θ̂∗j (k)θ̂kωl(k)〉∗ , (5.22)

ω〈Θ〉,ij(k) = −1

2
εjkl〈Θk〉〈θ̂∗i (k)ω̂l(k)〉 − 1

2
εikl〈Θk〉〈θ̂∗j (k)ω̂l(k)〉∗ , (5.23)

Dθ,ij(k) = 2Dk2Eθ,ij(k) , (5.24)

and represent the physical mechanisms of advection (Tθ,ij(k)), amplification of the

scalar gradients by the fluctuating strain rate (sθ,ij(k)), production of scalar gradi-

ents through interactions of the fluctuating strain rate and the mean scalar gradient

(s〈Θ〉,ij(k)), rotation of the scalar gradients by the fluctuating vorticity (ωθ,ij(k)),

production of scalar gradients through interaction of the fluctuating vorticity and

the mean scalar gradient (ω〈Θ〉,ij(k)), and dissipation of scalar gradients by molec-

ular diffusion (Dθ,ij(k)). Integrating the equation for Eθ,ij(k) over all of Fourier

space and taking the trace recovers (5.14). It is important to note that the terms

Tθ,ij(k), sθ,ij(k), and ωθ,ij(k) are nonlinear, and thus involve interactions between

many Fourier modes. This point will be revisited after presenting some preliminary

results for this type of analysis.

The spectral budgets of the scalar gradients have been analyzed for the highest

resolution datasets, focusing on Runs 2, 6, and 13 for Sc = 4, 8, and 32, respec-

tively, with results presented in figure 5.11. The spectra are integrated in Fourier

space over spherical shells, and are normalized by the Batchelor scale and the trace of

the dissipation rate tensor of the scalar gradients (last term in 5.14). There appears

to be much going on at high wavenumbers near the Batchelor scales, as one would

expect. For reference, the peak of the dissipation spectrum of the scalar variance
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Figure 5.11: Spectral budget of scalar gradient covariance tensor components: (a)
for gradients in the direction of the mean scalar gradient, and (b) for transverse
gradients. Upper (red) curve for sθ,αα(k), lowest (magenta) curve for Dθ,αα(k), curve
that transitions from negative to positive in both frames (black) for Tθ,αα(k), and
last discernible (green) curve for ωθ,αα(k). Terms involving mean gradient cannot
be distinguished in the plot. Different symbols and line types for different Schmidt
numbers, with Schmidt number increasing for curves extending to lower kηB.

is around 0.2 . kηB . 0.3, and the peak of the dissipation spectrum for the scalar

gradients is observed to be pushed out to even higher wavenumbers (expected). The

nonlinear amplification spectrum sθ,αα(k) is seen to dominate the budget over a wide

range of wavenumbers, and is balanced by the advection and vorticity terms at lower

wavenumbers. There does not, however, appear to be a strong dependence on the

Schmidt number at high wavenumbers, suggesting that the scalar gradient budget

takes a universal form at very high Schmidt numbers. As the Schmidt number in-

creases, the various spectra cover a wider range of wavenumbers (extending to the

left), and decrease in overall magnitude in the low wavenumber range.

While the analysis presented in figure 5.11 does provide some insight into what

processes influence the evolution of the scalar gradients, there is still much that can be

done to gain a better understanding. The shortcoming of the current analysis is that

the nonlinear interactions, which involve various scales acting together, are not fully

described by figure 5.11. Take, for example, the nonlinear amplification spectrum,
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which can be written in the following manner after expanding the convolution sum

sθ,ij(k) = −

〈
θ̂∗i (k)

∑
p

θ̂k(k− p)ŝkj(p)

〉
−

〈
θ̂∗j (k)

∑
p

θ̂k(k− p)ŝki(p)

〉∗
. (5.25)

The production of Eθ,ij(k) at a mode k is seen to depend on triads of wavenumbers: k,

p, and k−p, and it would be very useful to identify what types of interactions are more

important than others. Such analysis can be carried out through selective filtering

of the wavenumbers used in the convolution sum, an approach which proved very

successful in classical spectral transfer analysis for the velocity field (Domaradzki &

Rogallo, 1990). In the high Schmidt number limit, specifically, it is likely the case that

the strain rate fluctuations that dominate the evolution of the scalar gradients through

this nonlinear mechanism occur in the wavenumber range of the energy dissipation

range. Further elucidating the dynamics of scalar gradients in this manner might help

improve understanding of mixing in general, and could also be useful in modeling.

5.6 Summary

This chapter presents results from a new DNS database intended to study turbulent

mixing at high Schmidt numbers. Using the parallel algorithms developed in Chap-

ter IV, petascale computational resources have enabled the first known turbulent

mixing simulations with 81923 grid points for the scalar field. The largest simulations

attain Sc = 512 for the passive scalar, which is comparable to salinity mixing in the

ocean, while also maintaining a high enough Reynolds number (Rλ ≈ 140) to observe

a short inertial range the velocity field.

Thus far the DNS database has been used to investigate some fundamental ques-

tions regarding the Schmidt number dependence of certain passive scalar statistics.

Important among these is the violation of local isotropy in the scalar field, and the

hypothesis that local isotropy might be attained in the limit of high Schmidt num-
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ber. A trend towards local isotropy is observed in the simulations, which is evident

in frame (a) of figure 5.4 showing the skewness of the scalar gradient parallel to the

mean gradient (which should be zero if isotropy holds), which exhibits a power-law

dependence on the Schmidt number close to Sc−0.45. The data appears very robust, as

results from past DNS using different numerical methods for the scalar field (Donzis

& Yeung, 2010) show very similar results at moderate Schmidt numbers. It has also

been suggested in the literature that small-scale intermittency in the scalar field might

saturate at high Schmidt number. To check this hypothesis with the new DNS data,

the flatness factors of scalar gradients and the scalar dissipation rate PDF are pre-

sented in figure 5.6. While the PDF of the scalar dissipation rate is highly suggestive

of saturation, higher resolutions yet are needed to confirm the expectation that the

flatness factors of the scalar gradients might saturate at high Schmidt number.

Also of interest is the structure of the scalar field, and in particular, what shape the

passive scalar spectrum attains at high Schmidt number. Both Batchelor and Kraich-

nan predicted that in the viscous-convective range the scalar spectrum would exhibit

k−1 scaling, although they differ in their predictions for the far-diffusive range. The

time-averaged spectra presented in figure 5.7 are very suggestive of Batchelor scaling,

and agree with the exponential decay in the far-diffusive range predicted by Kraich-

nan. The development of a broad scaling range in the scalar field with increasing

Schmidt number is also investigated in physical space with Yaglom’s relation, where

the result presented in figure 5.8 shows good agreement with the theoretical result

over almost one decade of separations at Sc = 512.

Because mixing ultimately occurs at the small scales, statistics of scalar gradients

have also been analyzed. With the setting being the principal axes of the strain rate

tensor, there is good agreement with the expectation that scalar gradients are pref-

erentially aligned with the direction of the most compressive principal strain rate.

There is a slight weakening of the alignment at higher Schmidt numbers, which com-
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bined with the results of Vedula et al. (2001) suggest that alignment is maximal

near unity Schmidt number. Historically, much analysis of scalar gradients has taken

place in physical space (Vedula et al., 2001; Brethouwer et al., 2003), where statis-

tics such as the nonlinear amplification of the scalar gradient variances due to the

fluctuating strain rates are calculated. To further elucidate scalar gradient evolution,

the governing equation for the scalar gradient spectral covariance is derived, where

physical processes such as nonlinear amplification are calculated on a scale-dependent

basis. Preliminary results show nonlinear amplification dominating the evolution of

the scalar gradients over a wide range of scales, with overall weak Schmidt-number

dependencies in the shapes of the various balance terms for the spectrum. Further

work is required to understand the locality of the interactions in the nonlinear terms,

which could be useful to improve understanding of scalar gradient amplification in

the viscous-convective range of scales at high Schmidt numbers.
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CHAPTER VI

CONCLUSIONS

Turbulence remains a very challenging subject that is relevant to many science com-

munities ranging from applied engineering to astrophysics (Sreenivasan, 1999). The

unsolved nature of turbulence — owing to its strong nonlinearities — forces one to

consider one particular flow of interest at a time, and to gradually build a deeper

understanding and appreciation for the complexities of turbulence over time. Such

an effort is undertaken in this thesis, where an emphasis is placed on the problems

of turbulence subjected to irrotational mean strain and turbulent mixing of passive

scalars. Turbulent flows are simulated using the method of direct numerical simula-

tion (DNS), whereby the exact governing equations for the fluid motion are solved

without modeling. This approach is very challenging from a computational perspec-

tive because turbulent flows possess a wide range of scales, from the large energy

containing motions to the small dissipative scales, all of which must be adequately

resolved in DNS. To handle the large computational requirements of DNS, the thesis

emphasizes developing algorithms which enable simulations at unprecedented scales

on many of today’s high performance computing (HPC) architectures. This chapter

summarizes these and other major efforts from this thesis, and looks forward to other

problems and techniques which can further improve our understanding.

6.1 Summary of results and contributions

The research reported in this thesis has contributed to both the fundamental under-

standing of turbulence and turbulent mixing, and has demonstrated how HPC can be

used efficiently in the pursuit of such knowledge. The following subsections provide

a summary of the major results and contributions from each chapter of this thesis.
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6.1.1 Turbulence under axisymmetric contraction

Simulations were conducted to study the evolution of turbulence subjected to irrota-

tional mean strain in the form of axisymmetric contraction. The simulations used de-

forming computational domains and a strain rate which models the spatially-varying

strain rate profile in the experimental wind tunnel facility of Ayyalasomayajula &

Warhaft (2006) (AW henceforth). The experimental strain rate was modeled by ex-

tending the numerical method of Rogallo (1981) to evaluate the computational grid

metrics and viscous integrating factors as functions of spatial location in a numerical

wind tunnel, rather than of time. Key results presented include the axisymmetric

energy spectrum and the budgets for the longitudinal and transverse 1-D spectra —

quantities which are extremely difficult to measure experimentally. The simulations

successfully confirmed the findings of AW that the “double-peak” spectral form that

emerges in the transverse compensated 1-D spectrum following the contraction is a

distinct result of high Reynolds number. Analysis of the spectral budgets showed that

it is a result of very fast spectral transfer from low wavenumber to high wavenumbers.

6.1.2 Turbulent mixing under axisymmetric contraction

Building on the success of the numerical modeling of the AW wind tunnel, simulations

were also conducted to study passive scalar mixing under axisymmetric contraction.

The DNS used a numerical configuration similar to the wind tunnel experiments of

Gylfason & Warhaft (2009) (GW henceforth; their experiments were conducted in

the same wind tunnel as AW), where temperature fluctuations in air were studied by

introducing a mean transverse temperature gradient into the flow. A key effort in

the DNS was to broaden the scope of the investigation by also including a passive

scalar with a streamwise mean gradient. The DNS showed that the rapid distortion

theory (RDT) predictions of GW for the scalar spectrum and scalar gradients hold

very well as the strain rate in the numerical wind tunnel is increased. The simula-
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tions elucidated important differences that emerge during the contraction for scalars

with mean gradients in different directions. Specifically, for the scalar with a mean

streamwise gradient, an imbalance developed between the production and dissipation

rates of scalar variance, such that the scalar variance was destroyed following the

contraction. Similar to GW, during relaxation the scalar spectrum rapidly increased

at high wavenumbers, which is similar to the findings for the velocity field.

6.1.3 Algorithms for petascale simulations of turbulent mixing at high

Schmidt number

A major goal of this thesis was to develop numerical algorithms capable of simulating

high Schmidt number turbulent mixing in moderately high Reynolds number turbu-

lence (high enough for inertial-range scaling), requiring up to 81923 grid points for the

passive scalar. To simulate such conditions efficiently, the dual-grid dual-scheme ap-

proach of Gotoh et al. (2012) was adopted, which uses high-order combined compact

finite differences (CCD) to compute the passive scalar on a fine grid which resolves the

Batchelor scale, and Fourier pseudo-spectral methods to compute the velocity field on

a coarse grid which resolves the Kolmogorov scale. A major effort was to extend the

ideas of Gotoh et al. (2012) to incorporate the physics of the passive scalar directly

in the design of the new code. For simulations at high Schmidt number, this was ac-

complished by implementing a dual-communicator approach in which the velocity and

scalar fields are computed using disjoint groups of processes, each matched to their

respective problem size. In addition, the one-way coupling of the two fields enabled

the design of a communication strategy in which the transfer of the velocity field from

the velocity communicator to the scalar communicator is overlapped with computa-

tions in the larger scalar communicator. This work also addressed the challenges of

achieving good scalability out to the large problems sizes required for high Schmidt

number scalars. Scalability was improved by overlapping communication with com-
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putation, where for the CPU-only version of the code run on the XE6 partition of

Blue Waters at the University of Illinois, Urbana-Champaign, considerable improve-

ment was attained by dedicating certain threads to perform communication while

others compute concurrently. The code was also ported to run on the 27 petaflop

heterogeneous GPU-accelerated machine Titan housed at Oak Ridge National Labo-

ratory, TN, using the latest OpenMP 4.5 capabilities of the Cray compiler. Here too,

scalability was improved by overlapping communication with computation, with such

overlap being achieved through asynchronous execution between the CPU and GPU.

6.1.4 Turbulent mixing at high Schmidt number

Simulations using the algorithm described above were conducted on Blue Waters

and Titan to generate a new DNS database for mixing in Rλ ≈ 140 forced isotropic

turbulence, with Schmidt numbers ranging from 4 to 512. The particular choice of

Rλ ≈ 140 was a good starting point for the simulations, given that some data up to

Sc = 64 is available in the literature (Donzis & Yeung, 2010). Thus far the database

has provided further support for the hypothesis that the scalar satisfies local isotropy

and experiences a saturation of intermittency in the limit of high Schmidt number.

The form of the scalar spectrum at high Schmidt number, which is a longstanding

open question (Gotoh & Yeung, 2013), was also investigated. The DNS data support

a trend towards Batchelor (k−1) scaling in the viscous-convective range as the Schmidt

number is increased, and an exponential decay in the far-diffusive range. Two-point

statistics in physical space were also examined, where it was found that the third-

order velocity-scalar structure function shows a broad scaling range at high Schmidt

number, in good agreement with Yaglom’s relation. Local isotropy and saturation of

intermittency as functions of scale-size were assessed with scalar structure functions,

and show similar trends with changes in the Schmidt number as the single-point

statistics. New behavior, however, was observed as the skewness structure function
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developed a local minimum for separations in the range of 20–30 Batchelor scales at

higher Schmidt numbers. Scalar gradients were also studied, which show strong align-

ment with the most compressive principal strain direction, although the alignment

weakens slightly as the Schmidt number is increased. Finally, the spectral budget for

the scalar gradient covariance is derived and analyzed. The budget provides further

insight into the evolution of the scalar gradients by showing how physical processes,

e.g., nonlinear amplification by the strain rates, occur as functions of scale size.

6.2 Future considerations

Looking forward, DNS and HPC will continue to provide deep insight into the funda-

mental nature of turbulent flows. This thesis scratches the surface of many interesting

problems, including anisotropic turbulence generated by mean strain, turbulent mix-

ing, and parallel algorithms for large-scale simulations. There are many ways by

which the current research can be extended to further improve our understanding of

turbulence and our capabilities in HPC, as discussed below.

Physical-space significance of the double-peak spectral form

Following the application of axisymmetric contraction at sufficiently high Reynolds

numbers, both the experiments of AW and the simulations reported in this thesis

show the emergence of a double-peak structure in the transverse 1-D compensated

spectrum. While the result is robust, and the physical mechanisms behind its for-

mation have been elucidated, it is not clear how the double-peak relates to the flow

structure in physical space. Flow visualization and analysis of how the double-peak

structure affects the two-point correlation might be useful to understand this.

Effect of contraction ratio in strained simulations

The simulations of turbulence under axisymmetric contraction used a 4:1 area ratio to

match the AW wind tunnel. One may then ask, what is the effect of the contraction
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ratio on the spectral evolution? Clearly, the behavior is known for the limiting cases of

no contraction (i.e., decaying isotropic turbulence) and the 4:1 area ratio contraction

used by AW; however, additional simulations should be carried out for 2:1, 3:1, etc.

area ratios to see when double-peak structure emerges for a given Reynolds number.

Grid refinement strategies for high contraction ratio simulations

The simulations of strained turbulence conducted for this thesis used a fixed number

of grid points for all three phases of the simulations (i.e., the pre-simulation, the

application of strain, and the post-contraction relaxation). The domain during the

pre-simulation is short in the direction of extensional strain (see figure 2.1), and as a

result has very fine grid spacing — much finer than might be necessary to resolve the

small-scale fluctuations in that direction. This excessively fine grid spacing restricts

the allowable time step during the pre-simulation, thus increasing the cost of that

phase of the simulation. Instead of using a fixed number of grid points, an alternative

strategy is to coarsen the grid in the direction of extensional strain during the pre-

simulation, and to refine the grid during the contraction as the resolution worsens.

This will increase the pre-simulation time step size, and can be accomplished by

providing additional Fourier modes (when needed) in the extensional direction with

zero initial value.

Reynolds number dependencies for other straining configurations

The simulations in this thesis for strained turbulence focused on the single configu-

ration of turbulence under axisymmetric contraction, which AW showed evolves in

a Reynolds-number dependent manner. A natural follow-up question is: what high

Reynolds number behaviors are potentially awaiting discovery for other irrotational

strains, e.g., axisymmetric expansion and plane strain?

Simulations with multiple strain rates applied in succession

While an emphasis was placed on a single axisymmetric contraction, there are many
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engineering devices in which strains are applied in sequence, e.g., axisymmetric ex-

pansion follows axisymmetric contraction in a converging-diverging nozzle. The DNS

code is more than capable of performing such simulations (after providing the strain-

ing profiles), which might prove useful for modeling purposes.

Transition from two-dimensional to three-dimensional turbulence

It was shown that during the application of sufficiently strong strain the turbulence

approaches a limiting state of two-dimensional isotropic turbulence. This motivates

a simple, but complicated problem: how would two-dimensional isotropic turbulence

transition (through nonlinear interactions) to three-dimensional turbulence? To in-

vestigate this one can initialize a two-dimensional isotropic field, and superimpose

three-dimensional perturbations on the flow field. At the time of this writing, it looks

like there is some active research on this problem (Biferale et al., 2017), which we are

interested in pursuing.

Model assessment for passive scalars under strain

For passive scalars under axisymmetric contraction, it would be useful to make an

assessment of commonly used turbulence models, and see if they can predict the

evolution of the scalar flux during and after the contraction for scalars with mean

gradients in different directions. Further comparisons with the scalar gradient models

developed by Gylfason & Warhaft (2009) are also needed.

Additional insights from high Schmidt number DNS database

For high Schmidt number turbulent mixing, it is important that we gain a deeper

understanding of some of the numerical results presented in this thesis. The most

important of these is perhaps: why does the skewness of the scalar gradient parallel

to the mean gradient decrease with a power-law dependence on the Schmidt number,

and what determines the power-law exponent? Similar approaches towards local

isotropy with increasing Schmidt number have been reported in the past (Yeung
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et al., 2002). The decrease in the skewness may be to be related to the rolling up of

thin scalar dissipation sheets by the flow (Brethouwer et al., 2003). To gain a better

understanding of the scalar gradients, and how they depend on Schmidt number,

further analysis of the DNS database must be done.

Schmidt number dependencies in decaying scalar fields

Additional insights into scalar evolution can be gained from a somewhat simplified

numerical configuration compared to the case of continuous forcing by a mean scalar

gradient. Consider initializing the scalar fluctuations to be the negative of the velocity

field in a given coordinate direction. Such an initial condition corresponds to gener-

ating scalar fluctuations with a uniform mean gradient activated for just an instant,

and then turning the mean gradient off. The scalar gradients are initially positively

skewed (due to the negative skewness of the velocity gradients), and their evolution

will quickly differ for scalars at different Schmidt numbers. Although the scalar will

be decaying, understanding how the gradients evolve in this simplified configuration

might help explain the power-law dependence the skewness has on Sc for simulations

in which the mean gradient is active.

Differential diffusion at high Schmidt number

There are other problems involving high Schmidt number scalars which have not been

addressed in this work. One among these is differential diffusion, where the emphasis

is shifted from studying the statistics of a single passive scalar to observing how scalars

which are initially correlated become de-correlated as a result of diffusive processes.

Differential diffusion is important in many applications which require scalars to be

present in certain proportions at the same spatial location, e.g., in combustion appli-

cations the reactants must be brought together at the molecular level to react. While

differential diffusion has been studied for modest Schmidt numbers (Yeung, 1998),

little is known for the case of both scalars having high Schmidt numbers, further
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insight into which would be very useful for applications involving liquid mixing.

High Schmidt number active scalars

It is also common that the scalar transported by the turbulent flow is active, meaning

that it couples back to the momentum equation in the form of a forcing term. In

incompressible flows a common example is a buoyancy force exerted on the fluid

arising from fluctuations in the fluid density. Important examples of weakly-diffusive

active scalars include temperature and salinity fluctuations in the ocean, which have

a Prandtl number of 7 and a Schmidt number of approximately 700, respectively. It

would be very useful to the utilize current DNS code to study the effects of one or

more weakly-diffusive active scalars, as such simulations could provide some insight

into important geophysical flows, e.g., the ocean.

High Schmidt number scalars under strain

It would also be very useful to extend the current work to consider passive scalars

at high Schmidt number under the application of mean strain. Such studies would

be relevant to mixing in water flowing through pipes of variable cross-section, and

would serve as extensions to both the strained scalar work in Chapter III and the

high Schmidt number work in Chapter V. To perform such simulations, the CCD code

would need to be modified to solve for the passive scalar in the deforming (Rogallo)

coordinate system, which should not be a very difficult task.

Lagrangian perspectives in turbulence

One limitation of the current work is that it only considers turbulence from the Eu-

lerian (laboratory) reference frame. In the Lagrangian description of turbulence, the

reference frame is switched to that of infinitesimal fluid particles advected by the tur-

bulent flow. Many physical phenomena, e.g., turbulent dispersion of a contaminant,

are more naturally described in a Lagrangian frame; however, as detailed by Yeung

(2002), not only are Lagrangian studies somewhat rare in the literature, but there is a
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strong need to consider more complex flows than isotropic turbulence. Following the

work in this thesis on turbulence under axisymmetric contraction, Lagrangian stud-

ies should be conducted in this “simple” anisotropic flow (i.e., simple compared to

inhomogeneous flows such as flows involving walls). Furthermore, Brethouwer et al.

(2003) showed that considerable insight into the physics of high Schmidt number

passive scalar mixing could be attained by considering the Lagrangian perspective.

Lagrangian data obtained from mixing simulations at high Schmidt number would

therefore be very useful.

Algorithms for high Reynolds mixing of moderate Schmidt number scalars

While the hybrid code developed in this thesis has been demonstrated to simulate

very high Schmidt number scalars efficiently, the dual-communicator nature of the

code can become a hindrance for moderate Schmidt number simulations. A current

problem of interest is passive scalar mixing of a scalar with, say Sc = 8 or Sc = 16, but

with a much higher Reynolds number than used in this thesis, e.g., Rλ ≈ 400. Such

a simulation would be useful to study the effects of small-scale velocity intermittency

on the scalar field. For this purpose, the velocity field resolution should be kept very

high, perhaps with Nv = 4096, while the scalar can be computed with Nθ = 8192. The

dual-communicator nature of the code is likely to be not optimal at this scale because

the velocity field and scalar field communicators would be very close in size. To enable

such simulations, the current FPS code can be augmented with the CCD scheme in a

single-communicator format. Such an extension should be very straightforward, and

would significantly expand the scope of problems that can be simulated.

Exploring the use of one-sided communication

Large-scale DNS of turbulence also demands that one continues to improve their

understanding of HPC, so they can write codes that scale well and achieve high

performance on current and emerging computing architectures. A starting point for
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extending the current work is to consider different communication paradigms available

through MPI. For example, it has previously been shown (not in this thesis) that for

the FPS code a type of one-sided communication (specifically, co-array Fortran, or

CAF) can be used to improve performance of certain collective communication calls.

Unfortunately, it appears that CAF is severely lacking compiler support, so the one-

sided communication supported by MPI-3 should be considered. One example from

the hybrid code that should be tested with one-sided communication is the transfer of

the velocity field from the velocity communicator to the scalar communicator. This

communication is currently implemented with matching MPI SEND and MPI IRECV

calls, but could be implemented with a one-sided MPI PUT call from the velocity

communicator to the scalar communicator, which might improve performance.

Task-based programming models for CFD code design

There is also potential room to improve the use of shared-memory programming in

the codes developed for this work. One interesting paradigm to consider is that of

task-based programming, which contrasts the fine-grained (i.e., loop-level) parallelism

approach used in most of the subroutines developed in this work. Specifically, with

OpenMP, units of work (i.e., actual computations or communication calls) can be

encapsulated in the form of tasks, which are then executed by OpenMP threads.

While task-based programming was in fact used for the GPU algorithms, for GPU

execution it is a requirement, and the full power of OpenMP’s task-based program-

ming model was not explored. Its not entirely clear if performance can be improved

with such an approach, but the combination of one-sided communication and task-

based programming might be a viable option for many-core type machines. (Here it

seems like one-sided communication might be a requirement, so as to avoid excessive

synchronization or deadlocks between threads performing tasks in different orders.)
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APPENDIX A

A NUMERICAL STUDY OF TURBULENCE UNDER TEMPORALLY

EVOLVING AXISYMMETRIC CONTRACTION AND SUBSEQUENT

RELAXATION

M. P. Clay and P. K. Yeung. 2016 Journal of Fluid Mechanics 805, 460–493.

Abstract

Direct numerical simulations using up to 40963 grid points on a deforming domain

have been used to study the response of initially isotropic turbulence to a period

of spatially-uniform axisymmetric contraction (with one extensional and two equally

compressive directions) and subsequent relaxation. A time-dependent strain rate is

formulated to closely correspond to the downstream evolution in the wind tunnel

experiments of Ayyalasomayajula & Warhaft (J. Fluid Mech. 566, 273-307, 2006),

with a smoothly-varying 4:1 contraction ratio. The application of strain leads to

anisotropy in both the large scales and the small scales, in a manner where nonlinear

effects not considered in rapid-distortion theory play an important role. Upon termi-

nation of strain the small scales quickly return to isotropy while a residual level of

anisotropy appears to persist at the large scales. The simulations are shown to repro-

duce many key findings from experiments, including distinctive changes in the form of

the one-dimensional spectra in the extensional direction that arise at sufficiently high

Reynolds number, during both the straining and relaxation periods. Scale-dependent

measures of anisotropy are presented in terms of one-dimensional spectra and axisym-

metric versions of the energy spectrum. To explain the observed changes in spectral

shapes, various terms in the spectral evolution equation representing rapid pressure-

strain, slow pressure-strain, production, nonlinear transfer, and viscous dissipation

are computed, showing that nonlinear effects take a dominant role when a wide range
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of scales exists. In particular, the “double-peak” spectral form observed in exper-

iments at high Reynolds number is found to be a consequence of the small scales

relaxing towards isotropy much faster than the large scales. A comparison of results

obtained from computational domains of varying sizes and grid resolutions show that

the numerical findings are robust.
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APPENDIX B

A NUMERICAL STUDY OF TURBULENCE UNDER

TIME-DEPENDENT AXISYMMETRIC CONTRACTION AND

SUBSEQUENT RELAXATION

M. P. Clay, P. K. Yeung and Z. Warhaft. Nov. 2015 68 th Annual Meeting of the

Division of Fluid Dynamics of The American Physical Society, Boston, MA.

Abstract

Turbulence subjected to axisymmetric strain is a fundamental problem which is com-

mon in engineering equipment with variable cross-section, but is not yet fully un-

derstood. We have performed direct numerical simulations on a deforming domain

with grids up to 10243 and a time-dependent strain history designed to mimic spatial

gradients in wind-tunnel experiments (Ayyalasomayajula & Warhaft J. Fluid Mech.

566, 273-307 (2006)). Isotropic turbulence with a specified energy spectrum is allowed

to decay and then passed through a numerical conduit of 4:1 contraction ratio. The

Reynolds stress tensor, velocity gradient variances, and longitudinal and transverse

one-dimensional (1-D) spectra are studied during both the contraction and subsequent

relaxation. Contraction leads to amplification of energy in the compressed directions

and departures from local isotropy. When the strain is removed local isotropy returns

quickly while the energy decays with a power law exponent smaller than for decay-

ing isotropic turbulence. The evolution of 1-D spectra including changes in shape is

consistent with experiments, but a large solution domain is important.
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APPENDIX C

A DUAL COMMUNICATOR AND DUAL GRID-RESOLUTION

ALGORITHM FOR PETASCALE SIMULATIONS OF TURBULENT

MIXING AT HIGH SCHMIDT NUMBER

M. P. Clay, D. Buaria, T. Gotoh and P. K. Yeung. 2017 Computer Physics Commu-

nications 219, 313–328.

Abstract

A new dual-communicator algorithm with very favorable performance characteris-

tics has been developed for direct numerical simulation (DNS) of turbulent mixing

of a passive scalar governed by an advection-diffusion equation. We focus on the

regime of high Schmidt number (Sc), where because of low molecular diffusivity the

grid-resolution requirements for the scalar field are stricter than those for the ve-

locity field by a factor
√
Sc. Computational throughput is improved by simulating

the velocity field on a coarse grid of N3
v points with a Fourier pseudo-spectral (FPS)

method, while the passive scalar is simulated on a fine grid of N3
θ points with a

combined compact finite difference (CCD) scheme which computes first and second

derivatives at eighth-order accuracy. A static three-dimensional domain decompo-

sition and a parallel solution algorithm for the CCD scheme are used to avoid the

heavy communication cost of memory transposes. A kernel is used to evaluate several

approaches to optimize the performance of the CCD routines, which account for 60%

of the overall simulation cost. On the petascale supercomputer Blue Waters at the

University of Illinois, Urbana-Champaign, scalability is improved substantially with a

hybrid MPI-OpenMP approach in which a dedicated thread per NUMA domain over-

laps communication calls with computational tasks performed by a separate team of

threads spawned using OpenMP nested parallelism. At a target production problem
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size of 81923 (0.5 trillion) grid points on 262, 144 cores, CCD timings are reduced

by 34% compared to a pure-MPI implementation. Timings for 163843 (4 trillion)

grid points on 524, 288 cores encouragingly maintain scalability greater than 90%,

although the wall clock time is too high for production runs at this size. Performance

monitoring with CrayPat blue for problem sizes up to 40963 shows that the CCD

routines can achieve nearly 6% of the peak flop rate. The new DNS code is built

upon two existing FPS and CCD codes. With the grid ratio Nθ/Nv = 8, the disparity

in the computational requirements for the velocity and scalar problems is addressed

by splitting the global communicator MPI COMM WORLD into disjoint communicators

for the velocity and scalar fields, respectively. Inter-communicator transfer of the

velocity field from the velocity communicator to the scalar communicator is handled

with discrete send and non-blocking receive calls, which are overlapped with other

operations on the scalar communicator. For production simulations at Nθ = 8192

and Nv = 1024 on 262, 144 cores for the scalar field, the DNS code achieves 94%

strong scaling relative to 65, 536 cores and 92% weak scaling relative to Nθ = 1024

and Nv = 128 on 512 cores.

185



www.manaraa.com

APPENDIX D

PARALLEL ALGORITHM USED TO SOLVE PERIODIC BLOCK

TRIDIAGONAL SYSTEM OF EQUATIONS UNDER A STATIC

THREE-DIMENSIONAL DOMAIN DECOMPOSITION

The material presented here is borrowed from the Appendix in Clay et al. (2017).

Some of the most critical computational operations in this work involve forming and

solving the system of equations represented by (4.6) in Section 4.1.2. For the sake of

completeness, this appendix presents the essential details for the parallel algorithm

used to solve the CCD linear system. The parallel algorithm was originally developed

by Nihei & Ishii (2003) as an extension to the algorithm by Mattor et al. (1995) for

tridiagonal matrices. A key feature of the algorithm is that the solution is obtained

with data distributed across multiple parallel processes without using transposes.

The notation and presentation of Nihei & Ishii (2003) is closely followed to facilitate

comparisons when referencing their work. It should be noted that the word “vector”

here takes its common meaning in computer science.

The eighth-order CCD scheme of Mahesh (1998) on a periodic grid line of N points

can be written as



B C O · · · A

A B C
...

O
. . . . . . . . . O

... A B C

C · · · O A B





~f1

~f2

...

~fN−1

~fN


=



~g1

~g2

...

~gN−1

~gN


, (4.1)
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where the 2× 2 block elements forming the matrix are

A =

 51 9h

−138 −18h

 , B =

 108 0

0 108h

 , C =

 51 −9h

138 −18h

 , (4.2)

where h is the grid spacing and O is the 2× 2 zero matrix. The linear system relates

the vectors ~fi containing the first and second derivatives at the grid point xi to the

functional values stored in the vectors ~gi, both given as

~fi =

 f ′i

f ′′i

 , ~gi =
1

h

 107(fi+1 − fi−1)− (fi+2 − fi−2)

−(fi+2 + fi−2) + 352(fi+1 + fi−1)− 702fi

 . (4.3)

Modifications are made for ~gi at the extreme points to satisfy periodic boundary

conditions. For example, at i = 1 and i = N one obtains

~g1 =
1

h

 107(f2 − fN)− (f3 − fN−1)

−(f3 + fN−1) + 352(f2 + fN)− 702f1

 , (4.4)

~gN =
1

h

 107(f1 − fN−1)− (f2 − fN−2)

−(f2 + fN−2) + 352(f1 + fN−1)− 702fN

 . (4.5)

The task is to solve (4.1) in parallel using P processors (MPI processes) numbered

p = 0, 1, · · · , P − 1. In the implementation P is the size of the sub-communicator

in a given direction, e.g., P = P1 in the P1 × P2 × P3 3-D process layout discussed

earlier when derivatives are taken in the x1 direction. When the grid line of N points

is distributed among the P processors the pth process is responsible for the M = N/P

points xpM+1, · · · , x(p+1)M . The N ×N linear system of 2× 2 block elements is then

partitioned among the processors such that the pth process solves a M ×M linear
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system comprised of 2× 2 block elements, as



B C O · · · O

A B C
...

O
. . . . . . . . . O

... A B C

O · · · O A B





~X
(0)
p,1

~X
(0)
p,2

...

~X
(0)
p,M−1

~X
(0)
p,M


=



~gpM+1

~gpM+2

...

~g(p+1)M−1

~g(p+1)M


, (4.6)

where this system is written as Lp ~X
(0)
p = ~Dp following the notation of Nihei & Ishii

(2003). Note that solving Lp ~X
(0)
p = ~Dp corresponds to Operation B in Table 4.1. The

LU factorization of Lp is precomputed and stored once at the beginning of program

execution, and is later used when solving (4.6). The solution from this linear system

is lacking additional coupling terms present in (4.1). This is remedied by defining

X
(1)
p and X

(2)
p

LpX
(1)
p =



A

O

...

O


, LpX

(2)
p =



O

...

O

C


, (4.7)

such that the final solution for the pth process given by

~Xp =



~fpM+1

~fpM+2

...

~f(p+1)M−1

~f(p+1)M


(4.8)

can be written as

~Xp = ~X(0)
p −X(1)

p
~ξ (1)
p −X(2)

p
~ξ (2)
p . (4.9)
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The vectors ~ξ
(1)
p and ~ξ

(2)
p couple the processors and are determined by the 2P × 2P

reduced linear system comprised of 2× 2 block elements given by



X
(1)
1,1 X

(2)
1,1 O · · · · · · O I

X
(1)
1,M X

(2)
1,M I O O

O I X
(1)
2,1 X

(2)
2,1 O

...

... O X
(1)
2,M X

(2)
2,M I O

...

...
. . . . . . . . . . . . O

O O I X
(1)
p,1 X

(2)
p,1

I O · · · · · · O X
(1)
p,M X

(2)
p,M





~ξ
(1)
1

~ξ
(2)
1

~ξ
(1)
2

~ξ
(2)
2

...

~ξ
(1)
p

~ξ
(2)
p



=



~X
(0)
1,1

~X
(0)
1,M

~X
(0)
2,1

~X
(0)
2,M

...

~X
(0)
p,1

~X
(0)
p,M



, (4.10)

where I is the 2×2 identity matrix. Since no single processor has the complete infor-

mation to form the right hand side of (4.10) initially, inter-processor communication

must be used to gather ~X
(0)
p,1 and ~X

(0)
p,M from all processors participating in the parallel

solution on a single processor that will solve the reduced system. Once the reduced

system is solved, the vectors ~ξ
(1)
p and ~ξ

(2)
p are redistributed to the other processors so

their respective portions of the solution to (4.1) can be finalized with (4.9).

When applying the CCD scheme in multiple dimensions, the reduced linear sys-

tems that couple a group of processes can be efficiently solved in a load-balanced man-

ner. For derivatives in the x1 direction on a grid of sizeN1×N2×N3 under a P1×P2×P3

process layout, each processor owns a subdomain of size N1/P1×N2/P2×N3/P3 and

participates in the solution of N2N3/(P2P3) linear systems. The P1 processors aligned

in the x1 direction can divide the work for the reduced linear systems such that

each processor solves the same number of reduced linear systems (albeit for different

“lines” of data in the x1 direction). The work is divided by appropriate packing of

~X
(0)
p,1 and ~X

(0)
p,M followed by a MPI ALLTOALL such that the destination tasks will have

all of the necessary data to form the right hand side of (4.10) for each reduced linear

system it is solving. The solution vectors ~ξ
(1)
p and ~ξ

(2)
p are then packed and sent to the
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appropriate task with another MPI ALLTOALL. These calls to MPI ALLTOALL and the

solution of the reduced linear system appear as Operations C, D, and E in Table 4.1.

The final solution obtained by (4.9) after the ~ξ
(1)
p and ~ξ

(2)
p vectors have been received

is Operation F in Table 4.1.
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APPENDIX E

IMPROVING SCALABILITY AND ACCELERATING PETASCALE

TURBULENCE SIMULATIONS USING OPENMP

M. P. Clay, D. Buaria and P. K. Yeung. Sept. 2017 (accepted) OpenMP Developers

Conference, Stony Brook, NY.

Abstract

In this talk we will present our recently devised parallel implementations of a com-

putational fluid dynamics code used to study turbulent mixing. Using advanced

features of OpenMP, including the latest in OpenMP 4.5, we focus on overlapping

communication with computation while maximizing the number of threads on the

host device (CPU) or target device (GPU) for work-sharing. We have developed dis-

tinct strategies for such overlap in both homogeneous and heterogeneous computing

environments. For simulations on the homogeneous Cray XE6 partition of Blue Wa-

ters at the University of Illinois, Urbana-Champaign, we have improved scalability

using up to 524, 288 cores for our largest production problem size of 81923 (0.5 trillion)

grid points by using OpenMP locks and nested parallelism to dedicate certain threads

to perform only communication, while other threads compute concurrently. Substan-

tial further gains in performance have been obtained by accelerating the code using

OpenMP 4.5 on the heterogeneous Cray XK7 system Titan, housed at Oak Ridge Na-

tional Laboratory, TN. Data movement between the CPUs and GPUs is minimized

by transferring the entire memory space for the simulation to the GPUs, where the

majority of the computations are performed, and only transferring data between the

CPUs and GPUs as needed for communication. We use the latest tasking capabilities

added to the TARGET constructs in OpenMP 4.5 (e.g., the DEPEND and NOWAIT clauses)

to overlap computation on the GPUs with (i) communication on the CPUs and (ii)
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data movement between the CPUs and GPUs. The combination of threading on the

CPUs and the asynchronous algorithm further improves performance by 20 percent.

The overall GPU to CPU speedup achieved is 2.5X.
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Jiménez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The
structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 65–90.

Keckler, S. W., Dally, W. J., Khailany, B., Garland, M. & Glasco, D.
2011 GPUs and the future of parallel computing. IEEE Micro 31, 7–17.

Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible vis-
cous fluid for very large Reynolds numbers. Dokl. Akad. Nuak. SSSR 30, 299–303.

Kraichnan, R. H. 1968 Small-scale structure of a scalar field convected by turbu-
lence. Phys. Fluids 11, 945–953.

Kraichnan, R. H. 1974 Convection of a passive scalar by a quasi-uniform random
straining field. J. Fluid Mech. 64, 737–762.
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